Temperature-Mediated Phase Separation Enables Strong yet Reversible Mechanical and Adhesive Hydrogels.

ACS Nano

Ningbo Institute of Materials Technology and Engineering, Institute of New Energy Technology, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.

Published: July 2023

Hydrogels with strong yet reversible mechanical and adhesive properties fabricated in a facile and friendly manner are important for engineering and intelligent electronics applications but are challenging to create and control. Existing approaches for preparing hydrogels involve complicated pretreatments and produce hydrogels that suffer from limited skin applicability. Copolymerized hydrogels are expected to present an intriguing target in this field by means of thermoresponsive features, while the perceived intrinsic flaws of brittleness, easy fracture, and weak adhesion enervate the development prospects. Herein, we report a hydrogel with strong yet reversible mechanical and adhesive properties using cellulose nanofibrils to simultaneously address multiple dilemmas inspired by a temperature-mediated phase separation strategy. This strategy applies temperature-driven formation and dissociation of hydrogen bonds between common copolymers and cellulose nanofibrils to trigger the onset and termination of phase separation for dynamically reversible on-demand properties. The resulting hydrogel exhibits up to 96.0% (117.2 J/m vs 4.8 J/m for interfacial toughness) and 85.7% (0.02 MPa vs 0.14 MPa for mechanical stiffness) adhesive and mechanical tunability when worked on skin, respectively. Our strategy offers a promising, simple, and efficient way to directly achieve robust adhesion performance in one step using common copolymers and biomass resources, with implications that could go beyond strong yet adhesive hydrogels.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c03910DOI Listing

Publication Analysis

Top Keywords

phase separation
12
strong reversible
12
reversible mechanical
12
mechanical adhesive
12
temperature-mediated phase
8
adhesive hydrogels
8
adhesive properties
8
cellulose nanofibrils
8
common copolymers
8
hydrogels
6

Similar Publications

The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e.

View Article and Find Full Text PDF

Algebraic Depletion Interactions in Two-Temperature Mixtures.

Phys Rev Lett

December 2024

Université de Mons, Laboratoire Interfaces & Fluides Complexes, 20 Place du Parc, B-7000 Mons, Belgium.

The phase separation that occurs in two-temperature mixtures, which are driven out of equilibrium at the local scale, has been thoroughly characterized, but much less is known about the depletion interactions that drive it. Using numerical simulations in dimension 2, we show that the depletion interactions extend beyond two particle diameters in dilute systems, as expected at equilibrium, and decay algebraically with an exponent -4. Solving for the N-particle distribution function in the stationary state, perturbatively in the interaction potential, we show that algebraic correlations with an exponent -2d arise from triplets of particles at different temperatures in spatial dimension d.

View Article and Find Full Text PDF

Bioinspired Antiswelling Hydrogel Sensors with High Strength and Rapid Self-Recovery for Underwater Information Transmission.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Hydrogel-based sensors typically demonstrate conspicuous swelling behavior in aqueous environments, which can severely compromise the mechanical integrity and distort sensing signals, thereby considerably constraining their widespread applicability. Drawing inspiration from the multilevel heterogeneous structures in biological tissues, an antiswelling hydrogel sensor endowed with high strength, rapid self-recovery, and low swelling ratio was fabricated through a water-induced phase separation and coordination cross-linking strategy. A dense heterogeneous architecture was developed by the integration of "rigid" quadridentate carboxyl-Zr coordination bonds and "soft" hydrophobic unit-rich regions featuring π-π stacking and cation-π interactions into the hydrogels.

View Article and Find Full Text PDF

The nuclear pore complex (NPC) is the proteinous nanopore that solely regulates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. Hypothetically, the NPC utilizes the hydrophobic barriers based on the repeats of phenylalanine-glycine (FG) units to selectively and efficiently transport macromolecules. Herein, we quantitatively assess the hydrophobicity of transport barriers confined in the nanopore by applying scanning electrochemical microscopy (SECM).

View Article and Find Full Text PDF

Amyloid fibril formation of α-synuclein (αSN) is a hallmark of synucleinopathies. Although the previous studies have provided numerous insights into the molecular basis of αSN amyloid formation, it remains unclear how αSN self-assembles into amyloid fibrils in vivo. Here, we show that αSN amyloid formation is accelerated in the presence of two macromolecular crowders, polyethylene glycol (PEG) (MW: ~10,000) and dextran (DEX) (MW: ~500,000), with a maximum at approximately 7% (w/v) PEG and 7% (w/v) DEX.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!