Metabolic therapy targeting the metabolic addictions driven by gain-of-function mutations in KRAS is promising in fighting cancer through selective killing of malignant cells without hurting healthy cells. However, metabolic compensation and heterogeneity make current metabolic therapies ineffective. Here, we proposed a biomimetic "Nutri-hijacker" with "Trojan horse" design to induce synthetic lethality in KRAS-mutated (mtKRAS) malignant cells by hitchhiking and reprogramming the metabolic addictions. Nutri-hijacker consisted of the biguanide-modified nanoparticulate albumin that impaired glycolysis and a flavonoid that restrained glutaminolysis after the macropinocytosis of Nutri-hijacker by mtKRAS malignant cells. Nutri-hijacker suppressed the proliferation and spread of mtKRAS malignant cells while lowering tumor fibrosis and immunosuppression. Nutri-hijacker significantly extended the lifespan of pancreatic ductal adenocarcinoma (PDAC)-bearing mice when combined with the hydroxychloroquine-based therapies that failed in clinical trials. Collectively, our findings demonstrated that Nutri-hijacker is a strong KRAS mutation-customized inhibitor and the synthetic lethality based on mtKRAS-driven metabolic addictions might be a promising strategy against PDAC.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c04069DOI Listing

Publication Analysis

Top Keywords

metabolic addictions
16
malignant cells
16
mtkras malignant
12
pancreatic ductal
8
ductal adenocarcinoma
8
synthetic lethality
8
metabolic
7
nutri-hijacker
6
cells
5
synthetically lethal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!