A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel antibiotic susceptibility of an RNA polymerase α-subunit mutant in Pseudomonas aeruginosa. | LitMetric

Novel antibiotic susceptibility of an RNA polymerase α-subunit mutant in Pseudomonas aeruginosa.

J Antimicrob Chemother

Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.

Published: September 2023

Background: RNA polymerase (RNAP) is highly conserved and essential for prokaryotic housekeeping activities, making it an important target for the development of new antibiotics. The rpoB gene, encoding a β-subunit of bacterial RNAP, has a well-known association with rifampicin resistance. However, the roles of other RNAP component genes such as rpoA, encoding an α-subunit of RNAP, in antibiotic resistance remain unexplored.

Objectives: To characterize the antibiotic resistance-related role of RpoA.

Methods: We measured the expression of the MexEF-OprN efflux pump in an RpoA mutant using a transcriptional reporter. The MICs of various antibiotics for this RpoA mutant were determined.

Results: We uncover a novel role of antibiotic susceptibility for an RpoA mutant in Pseudomonas aeruginosa. We found that a single amino acid substitution in RpoA resulted in reduced activity of the MexEF-OprN efflux pump, which is responsible for the exportation of various antibiotics, including ciprofloxacin, chloramphenicol, ofloxacin and norfloxacin. This attenuated efflux pump activity, caused by the RpoA mutation, conferred the bacteria further susceptibility to antibiotics regulated by MexEF-OprN. Our work further revealed that certain clinical P. aeruginosa isolates also contained the same RpoA mutation, providing clinical relevance to our findings. Our results elucidate why this new antibiotic-susceptible function of RpoA mutants would have remained undetected in conventional screens for mutants involving antibiotic resistance.

Conclusions: The discovery of antibiotic susceptibility in an RpoA mutant implicates a new therapeutic approach for treating clinical isolates of P. aeruginosa with RpoA mutations, using specific antibiotics regulated by MexEF-OprN. More generally, our work suggests that RpoA could serve as a promising candidate target for anti-pathogen therapeutic purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dkad207DOI Listing

Publication Analysis

Top Keywords

rpoa mutant
16
antibiotic susceptibility
12
efflux pump
12
rpoa
11
rna polymerase
8
mutant pseudomonas
8
pseudomonas aeruginosa
8
mexef-oprn efflux
8
susceptibility rpoa
8
rpoa mutation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!