Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This article describes the synthesis, characterization, and S-atom transfer reactivity of a series of -symmetric diiron complexes. The iron centers in each complex are coordinated in distinct ligand environments, with one (Fe) bound in a pseudo-trigonal bipyramidal geometry by three phosphinimine nitrogens in the equatorial plane, a tertiary amine, and the second metal center (Fe). Fe is coordinated, in turn, by Fe, three ylidic carbons in a trigonal plane, and, in certain cases, by an axial oxygen donor. The three alkyl donors at Fe form through the reduction of the appended N═PMe arms of the monometallic parent complex. The complexes were studied crystallographically, spectroscopically (NMR, UV-vis, and Mössbauer), and computationally (DFT, CASSCF) and found to be high-spin throughout, with short Fe-Fe distances that belie weak orbital overlap between the two metals. Further, the redox nature of this series allowed for the determination that oxidation is localized to the Fe. S-atom transfer chemistry resulted in the formal insertion of a S atom into the Fe-Fe bond of the reduced diiron complex to form a mixture of FeS and FeS products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071007 | PMC |
http://dx.doi.org/10.1021/acs.inorgchem.3c01068 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!