As the key component of extracorporeal membrane oxygenation (ECMO), artificial lung membranes have low gas permeability and plasma leakage problems, and the contact between membrane materials and blood can cause coagulation, leading to the blockage of medical equipment and seriously threatening the safety of human life. In our work, poly(4-methyl-1-pentene) hollow fiber membranes (PMP HFMs) were prepared by the thermally induced phase separation (TIPS) method, the redox method was adopted for the surface hydroxylation of PMP HFMs, and then, heparin (Hep) and 2-(methacryloyloxy)ethyl(2-(trimethylammonio)ethyl) phosphate (MPC) were grafted to the surface of PMP HFMs to prepare anticoagulant coatings. The gas permeability and hemo-compatibility of the coatings were investigated by various characterization methods, such as gas flow meter, scanning electron microscope, extracorporeal circulation experiment, etc. The results show that PMP HFMs possess a bicontinuous pore structure with a dense surface layer, which could maintain good gas permeability with an oxygen permeance of 0.8 mL/bar·cm·min and stable gas selectivity. Furthermore, the whole blood circulation of rabbit indicated that a composite surface of bioactive Hep and biopassive MPC might be used as artificial lung membranes without the formation of thrombosis within 21 days.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c00945DOI Listing

Publication Analysis

Top Keywords

pmp hfms
16
artificial lung
12
gas permeability
12
lung membranes
8
gas
5
phosphorylcholine/heparin composite
4
composite coatings
4
coatings artificial
4
lung membrane
4
membrane enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!