Oxygen is critical to the survival, function and fate of mammalian cells. Oxygen tension controls cellular behavior through metabolic programming, which in turn controls tissue regeneration. A variety of biomaterials with oxygen-releasing capabilities have been developed to provide oxygen supply to ensure cell survival and differentiation for therapeutic efficacy, and to prevent hypoxia-induced tissue damage and cell death. However, controlling the oxygen release with spatial and temporal accuracy is still technically challenging. In this review, we provide a comprehensive overview of organic and inorganic materials available as oxygen sources, including hemoglobin-based oxygen carriers (HBOCs), perfluorocarbons (PFCs), photosynthetic organisms, solid and liquid peroxides, and some of the latest materials such as metal-organic frameworks (MOFs). Additionally, we introduce the corresponding carrier materials and the oxygen production methods and present state-of-the-art applications and breakthroughs of oxygen-releasing materials. Furthermore, we discuss the current challenges and the future perspectives in the field. After reviewing the recent progress and the future perspectives of oxygen-releasing materials, we predict that smart material systems that combine precise detection of oxygenation and adaptive control of oxygen delivery will be the future trend for oxygen-releasing materials in regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3tb00670kDOI Listing

Publication Analysis

Top Keywords

oxygen-releasing materials
12
regenerative medicine
8
oxygen
8
materials oxygen
8
future perspectives
8
materials
6
oxygen-releasing
5
oxygen-releasing biomaterials
4
biomaterials regenerative
4
medicine oxygen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!