Microbes including bacteria are required to respond to their often continuously changing ecological niches in order to survive. While many signaling molecules are produced as seemingly circumstantial byproducts of common biochemical reactions, there are a few second messenger signaling systems such as the ubiquitous cyclic di-GMP second messenger system that arise through the synthesis of dedicated multidomain enzymes triggered by multiple diverse external and internal signals. Being one of the most numerous and widespread signaling system in bacteria, cyclic di-GMP signaling contributes to adjust physiological and metabolic responses in all available ecological niches. Those niches range from deep-sea and hydrothermal springs to the intracellular environment in human immune cells such as macrophages. This outmost adaptability is possible by the modularity of the cyclic di-GMP turnover proteins which enables coupling of enzymatic activity to the diversity of sensory domains and the flexibility in cyclic di-GMP binding sites. Nevertheless, commonly regulated fundamental microbial behavior include biofilm formation, motility, and acute and chronic virulence. The dedicated domains carrying out the enzymatic activity indicate an early evolutionary origin and diversification of "bona fide" second messengers such as cyclic di-GMP which is estimated to have been present in the last universal common ancestor of archaea and bacteria and maintained in the bacterial kingdom until today. This perspective article addresses aspects of our current view on the cyclic di-GMP signaling system and points to knowledge gaps that still await answers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mmi.15119 | DOI Listing |
NPJ Biofilms Microbiomes
March 2025
Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
Cyclic diguanylate (c-di-GMP) is a central biofilm regulator in Pseudomonas aeruginosa, where increased intracellular levels promote biofilm formation and antibiotic tolerance. Targeting the c-di-GMP network may be a promising anti-biofilm approach, but most strategies studied so far aimed at eliminating surface-attached biofilms, while in vivo P. aeruginosa biofilms often occur as suspended aggregates.
View Article and Find Full Text PDFMicrobes Infect
March 2025
State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China.
Listeria monocytogenes (Lm) poses a significant threat to human health. TRIM32, an E3 ubiquitin ligase, plays a critical role in regulating immune responses to pathogen infections. Previous studies have shown that TRIM32 deficiency significantly impairs IFN-β production.
View Article and Find Full Text PDFMicrobiol Spectr
March 2025
Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
is a bacterial pathogen that causes soft rot disease in many plant species worldwide, including temperate, subtropical, and tropical regions. This bacterium employs the type III secretion system (T3SS) to manipulate host immune responses. Although cyclic-di-GMP (c-di-GMP), a ubiquitous bacterial second messenger, negatively regulates the expression of T3SS genes in , the underlying mechanism remains unclear.
View Article and Find Full Text PDFNat Commun
March 2025
School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China.
Cyclic diguanosine monophosphate (c-di-GMP) functions as a crucial bacterial second messenger to control diverse biological functions. Although numerous studies have reported the health effects of Lactiplantibacillus plantarum, the regulatory role of c-di-GMP in L. plantarum remains elusive.
View Article and Find Full Text PDFISME J
March 2025
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
The biofilm matrix primarily consists of proteins, exopolysaccharides, and extracellular DNA. Pseudomonas aeruginosa aminopeptidase is one of the most abundant matrix proteins in P. aeruginosa biofilms and plays a crucial role in modulating biofilm development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!