Different therapeutic strategies have been designed and developed for the repair and regeneration of peripheral nerve injury (PNI) tissue as a result of advancements in tissue engineering and regenerative medicine. Due to its versatility, controlled delivery and administration of multifunctional therapeutic agents can be regarded of as an effective strategy in treating nerve injury. In this study, melatonin (Mel) molecules and recombinant human nerve growth factor (rhNGF) were loaded on the surface and in the core of polycaprolactone/chitosan (PCL/CS) blended nanofibrous scaffold. To simulate the microenvironment, a dual-delivery three-dimensional (3-D) nanofibrous matrix was developed and the neural development of stem cell differentiation process was systematically examined. The microscopic technique with acridine orange and ethidium bromide (AO/EB) fluorescence staining method was used to establish the adipose-derived stem cells (ADSCs) differentiation and cell-cell communications, which demonstrated that the effective differentiation of the ADSCs with nanofibrous matrix. As investigated observations, ADSCs differentiation was further evident through cell migration assay and gene expression analysis. According to the biocompatibility analysis, the nanofibrous matrix did not trigger any adverse immunological reactions. Based on these characteristics, a 5-week investigation examined the potential of the developed nanofibrous matrix in the regeneration of sciatic nerve of rats. Additionally, compared to the negative control group, the electrophysiological and walking track analyses demonstrated improved sciatic nerve regeneration. This study demonstrates the nanofibrous matrix's ability to regenerate peripheral nerves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328797PMC
http://dx.doi.org/10.1016/j.reth.2023.06.009DOI Listing

Publication Analysis

Top Keywords

nanofibrous matrix
16
sciatic nerve
12
nerve injury
8
adscs differentiation
8
nanofibrous
7
nerve
6
effective regeneration
4
regeneration rat
4
rat sciatic
4
nerve nanofibrous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!