As an essential nutrient, copper's redox properties are both beneficial and toxic to cells. Therefore, leveraging the characteristics of copper-dependent diseases or using copper toxicity to treat copper-sensitive diseases may offer new strategies for specific disease treatments. In particular, copper concentration is typically higher in cancer cells, making copper a critical limiting nutrient for cancer cell growth and proliferation. Hence, intervening in copper metabolism specific to cancer cells may become a potential tumor treatment strategy, directly impacting tumor growth and metastasis. In this review, we discuss the metabolism of copper in the body and summarize research progress on the role of copper in promoting tumor cell growth or inducing programmed cell death in tumor cells. Additionally, we elucidate the role of copper-related drugs in cancer treatment, intending to provide new perspectives for cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327296 | PMC |
http://dx.doi.org/10.3389/fonc.2023.1209156 | DOI Listing |
J Environ Manage
January 2025
School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Road, Haidian District, 100083, Beijing, People's Republic of China.
Limiting adverse consequences of mining activities requires ecosystem restoration efforts, whose arrangement around mining areas is poorly designed. It is unclear, however, where best to locate ecological projects to enhance ecosystem services cost-effectively. To answer this question, we conducted an optimized ecological restoration project planning by the Resource Investment Optimization System (RIOS) model to identify the restoration priority areas in the Pingshuo Opencast Coal Mine region in Shanxi Province.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Engineering, Design and Built Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
Rainwater harvesting (RWH) for drinking water production has been a potential solution to mitigate water scarcity in rural areas. There was limited research focusing on the quality of treated rainwater. This study developed and tested the quality of a drinking water filtration system (DWFS) for treating harvested rainwater to support rural communities.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Health concerns are increasingly prevalent due to aging populations and lifestyle-related diseases. Concurrently, modern consumers seek natural alternatives and are wary of medication side effects, emphasizing the importance of natural compounds for health maintenance. Functional mushrooms, known for their adaptogenic properties, offer health benefits beyond nutrition and are valued as nutraceuticals and functional foods.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Microbial metabolism is impressively flexible, enabling growth even when available nutrients differ greatly from biomass in redox state. , for example, rearranges its physiology to grow on reduced and oxidized carbon sources through several forms of fermentation and respiration. To understand the limits on and evolutionary consequences of this metabolic flexibility, we developed a coarse-grained mathematical framework coupling redox chemistry with principles of cellular resource allocation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!