AI Article Synopsis

  • Developed a data-driven model for anisotropic finite viscoelasticity using neural ordinary differential equations, ensuring compliance with physics-based constraints.
  • This method allows for modeling viscoelastic behavior of materials under complex loading conditions in 3D, even with significant deformations.
  • The model was trained on stress-strain data from various materials, demonstrating better performance than traditional models of viscoelasticity.

Article Abstract

We develop a fully data-driven model of anisotropic finite viscoelasticity using neural ordinary differential equations as building blocks. We replace the Helmholtz free energy function and the dissipation potential with data-driven functions that a priori satisfy physics-based constraints such as objectivity and the second law of thermodynamics. Our approach enables modeling viscoelastic behavior of materials under arbitrary loads in three-dimensions even with large deformations and large deviations from the thermodynamic equilibrium. The data-driven nature of the governing potentials endows the model with much needed flexibility in modeling the viscoelastic behavior of a wide class of materials. We train the model using stress-strain data from biological and synthetic materials including humain brain tissue, blood clots, natural rubber and human myocardium and show that the data-driven method outperforms traditional, closed-form models of viscoelasticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327622PMC
http://dx.doi.org/10.1016/j.cma.2023.116046DOI Listing

Publication Analysis

Top Keywords

anisotropic finite
8
finite viscoelasticity
8
viscoelasticity neural
8
neural ordinary
8
ordinary differential
8
differential equations
8
modeling viscoelastic
8
viscoelastic behavior
8
data-driven
5
data-driven anisotropic
4

Similar Publications

In this paper, we propose a novel structure of anisotropic graphene-based hyperbolic metamaterial (AGHMM) sandwiched as a defect between two one-dimensional photonic crystals (PCs) in the terahertz (THz) region. The proposed structure is numerically simulated and analyzed using the transfer matrix method, effective medium theory and three-dimensional finite-difference time-domain. The defect layer of AGHMM consists of graphene sheets separated by subwavelength dielectric spacers.

View Article and Find Full Text PDF

An anisotropic plasmonic trimer is proposed as an effective spectroscopic amplifier for the maximum signal enhancement of the Hyper-Raman Scattering (HRS) process. The three-particle system is composed of asymmetric Au nanorings arranged collinearly in a J-aggregate configuration and illuminated by a longitudinally polarized light. The optical properties of the considered trimer have been numerically simulated by the Finite-Difference Time-Domain (FDTD) method.

View Article and Find Full Text PDF

Quantifying the mechanical properties of coronary arterial walls could provide meaningful information for the diagnosis, management, and treatment of coronary artery diseases. Since patient-specific coronary samples are not available for patients requiring continuous monitoring, direct experimental testing of vessel material properties becomes impossible. Current coronary models typically use material parameters from available literature, leading to significant mechanical stress/strain calculation errors.

View Article and Find Full Text PDF

Integrating specific immune recognition, a desirable extinction coefficient, and conspicuous photothermal conversion ability into a single-immune probe to enhance the analysis performance represents an appealing yet significantly challenging task. Herein, by delicately manipulating the geometry of plasmonic nanoparticles from spherical to spiky, precise engineering approach-based spiky Au nanocubes (S-AuNCs) are employed to address this challenge, which fully exploits the plasmon resonance absorption-induced photothermal effect. The finite difference time domain (FDTD) method was employed to computationally simulate the electromagnetic and thermal fields while assessing the feasibility of regulating plasmon resonance for enhanced photothermal absorption.

View Article and Find Full Text PDF

Nonlinear Elasticity of Amorphous Silicon and Silica from Density Functional Theory.

J Phys Chem C Nanomater Interfaces

December 2024

Department of Chemistry, College of Staten Island, Staten Island, New York 10314, United States.

Density functional theory calculations and a finite deformation method are used to calculate second- and, most notably, third-order elastic constants of amorphous silicon and amorphous silicon dioxide, as represented by model structures generated via melt-quench force-field molecular dynamics simulations. Linear and nonlinear elastic constants are used to deduce macroscopic elastic moduli, such as the bulk and shear moduli, their pressure derivatives, and the elastic Grüneisen parameter. Our calculations show that the elastic properties of amorphous silicon reach the isotropic elastic limit within the nanometer length scale, attaining characteristics, both linear and nonlinear, comparable to those of crystalline silicon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!