Introduction: Over four billion people around the world rely on bread wheat ( L.) as a major constituent of their diet. The changing climate, however, threatens the food security of these people, with periods of intense drought stress already causing widespread wheat yield losses. Much of the research into the wheat drought response has centred on the response to drought events later in development, during anthesis or grain filling. But as the timing of periods of drought stress become increasingly unpredictable, a more complete understanding of the response to drought during early development is also needed.
Methods: Here, we utilized the YoGI landrace panel to identify 10,199 genes which were differentially expressed under early drought stress, before weighted gene co-expression network analysis (WGCNA) was used to construct a co-expression network and identify hub genes in modules particularly associated with the early drought response.
Results: Of these hub genes, two stood out as novel candidate master regulators of the early drought response - one as an activator (; ) and the other as a repressor (uncharacterised gene; ).
Discussion: As well as appearing to coordinate the transcriptional early drought response, we propose that these hub genes may be able to regulate the physiological early drought response due to potential control over the expression of members of gene families well-known for their involvement in the drought response in many plant species, namely dehydrins and aquaporins, as well as other genes seemingly involved in key processes such as, stomatal opening, stomatal closing, stomatal morphogenesis and stress hormone signalling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326901 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1212559 | DOI Listing |
MethodsX
June 2025
Department of Mathematics, Faculty of Mathematics and Natural Science, Mulawarman University.
Modeling rainfall data is critical as one of the steps to mitigate natural disasters due to weather changes. This research compares the goodness of traditional and machine learning models for predicting rainfall in Samarinda City. Monthly rainfall data was recapitulated by the Meteorology, Climatology, and Geophysics Agency from 2000 to 2020.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.
View Article and Find Full Text PDFPlant Sci
December 2024
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
Physiol Plant
December 2024
Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italia.
A common assumption of plant hydraulic physiology is that high hydraulic efficiency must come at the cost of hydraulic safety, generating a trade-off that raises doubts about the possibility of selecting both productive and drought-tolerant herbaceous crops. Wetland plants typically display high productivity, which requires high hydraulic efficiency to sustain transpiration rates coupled to CO uptake. Previous studies have suggested high vulnerability to xylem embolism of different wetland plants, in line with expected trade-offs.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Unit for Environment Science and Management, North-West University, Potchefstroom, South Africa.
Maize ( L.), a key staple crop in Sub-Saharan Africa, is particularly vulnerable to concurrent drought and heat stress, which threatens crop yield and food security. Plant growth-promoting rhizobacteria (PGPR) have shown potential as biofertilizers to enhance plant resilience under such abiotic stresses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!