A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A new modification of the flexible Weibull distribution based on power transformation: Monte Carlo simulation and applications. | LitMetric

Statistical modeling is a crucial phase for decision-making and predicting future events. Data arising from engineering-related fields have most often complex structures whose failure rate possesses mixed state behaviors (i.e., non-monotonic shapes). For the data sets whose failure rates are in the mixed state, the utilization of the traditional probability models is not a suitable choice. Therefore, searching for more flexible probability models that are capable of adequately describing the mixed state failure data sets is an interesting research topic for researchers. In this paper, we propose and study a new statistical model to achieve the above goal. The proposed model is called a new beta power very flexible Weibull distribution and is capable of capturing five different patterns of the failure rate such as uni-modal, decreasing-increasing-decreasing, bathtub, decreasing, increasing-decreasing-increasing shapes. The estimators of the new beta power very flexible Weibull distribution are obtained using the maximum likelihood method. The evaluation of the estimators is assessed by conducting a simulation study. Finally, the usefulness and applicability of the new beta power very flexible Weibull distribution are shown by analyzing two engineering data sets. Using four information criteria, it is observed that the new beta power very flexible Weibull distribution is the best-suited model for dealing with failure times data sets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329126PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e17238DOI Listing

Publication Analysis

Top Keywords

flexible weibull
20
weibull distribution
20
data sets
16
beta power
16
power flexible
16
mixed state
12
failure rate
8
probability models
8
weibull
5
distribution
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!