Unlabelled: A promising candidate for arbovirus control and prevention relies on replacing arbovirus-susceptible populations with mosquitoes that have been colonized by the intracellular bacterium and thus have a reduced capacity to transmit arboviruses. This reduced capacity to transmit arboviruses is mediated through a phenomenon referred to as pathogen blocking. Pathogen blocking has primarily been proposed as a tool to control dengue virus (DENV) transmission, however it works against a range of viruses, including Zika virus (ZIKV). Despite years of research, the molecular mechanisms underlying pathogen blocking still need to be better understood. Here, we used RNA-seq to characterize mosquito gene transcription dynamics in infected with the Mel strain of that are being released by the World Mosquito Program in Medellín, Colombia. Comparative analyses using ZIKV-infected, uninfected tissues, and mosquitoes without revealed that the influence of Mel on mosquito gene transcription is multifactorial. Importantly, because limits, but does not completely prevent, replication of ZIKV and other viruses in coinfected mosquitoes, there is a possibility that these viruses could evolve resistance to pathogen blocking. Therefore, to understand the influence of on within-host ZIKV evolution, we characterized the genetic diversity of molecularly barcoded ZIKV virus populations replicating in -infected mosquitoes and found that within-host ZIKV evolution was subject to weak purifying selection and, unexpectedly, loose anatomical bottlenecks in the presence and absence of . Together, these findings suggest that there is no clear transcriptional profile associated with -mediated ZIKV restriction, and that there is no evidence for ZIKV escape from this restriction in our system.

Author Summary: When bacteria infect mosquitoes, they dramatically reduce the mosquitoes' susceptibility to infection with a range of arthropod-borne viruses, including Zika virus (ZIKV). Although this pathogen-blocking effect has been widely recognized, its mechanisms remain unclear. Furthermore, because limits, but does not completely prevent, replication of ZIKV and other viruses in coinfected mosquitoes, there is a possibility that these viruses could evolve resistance to -mediated blocking. Here, we use host transcriptomics and viral genome sequencing to examine the mechanisms of ZIKV pathogen blocking by and viral evolutionary dynamics in mosquitoes. We find complex transcriptome patterns that do not suggest a single clear mechanism for pathogen blocking. We also find no evidence that exerts detectable selective pressures on ZIKV in coinfected mosquitoes. Together our data suggest that it may be difficult for ZIKV to evolve Wolbachia resistance, perhaps due to the complexity of the pathogen blockade mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327090PMC
http://dx.doi.org/10.1101/2023.06.26.546271DOI Listing

Publication Analysis

Top Keywords

pathogen blocking
24
zika virus
12
zikv
12
coinfected mosquitoes
12
mosquitoes
8
reduced capacity
8
capacity transmit
8
transmit arboviruses
8
viruses including
8
including zika
8

Similar Publications

Gammaherpesviruses are oncogenic pathogens that establish lifelong infections. There are no FDA-approved vaccines against Epstein-Barr virus or Kaposi sarcoma herpesvirus. Murine gammaherpesvirus-68 (MHV68) infection of mice provides a system for investigating of gammaherpesvirus pathogenesis and testing vaccine strategies.

View Article and Find Full Text PDF

An incursion and outbreak of Japanese encephalitis virus (JEV) was reported in Australia in 2021 and 2022, respectively. There was speculation that JEV may have been circulating in Australia unknowingly prior to the detection. In this study, we determined sero-prevalence and transmission of West Nile virus (WNV), Murray Valley encephalitis virus (MVEV) and JEV, prior to and post JEV incursion in a sentinel equine population in south-east Queensland (SEQ), Australia, using blocking ELISAs (screening test) and virus neutralisation test (confirmatory).

View Article and Find Full Text PDF

Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).

View Article and Find Full Text PDF

Endogenous metabolite N-chlorotaurine attenuates antiviral responses by facilitating IRF3 oxidation.

Redox Biol

January 2025

Department of Pathogenic Biology, Key Laboratory of Infection and Immunity of Shandong Province, and Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. Electronic address:

Cellular microenvironments critically control the activation of innate immune responses. N-chlorotaurine (Tau-Cl) is an endogenous metabolite that is markedly produced and secreted during pathogenic invasion. However, its effect on the antiviral innate immune responses remains unclear.

View Article and Find Full Text PDF

[Advances in the study of viruses inhibiting the production of advanced autophagy or interferon through Rubicon to achieve innate immune escape].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China. *Corresponding authors, E-mail:

The innate immune response is the first line of defense for the host against viral infections. Targeted degradation of pathogenic microorganisms through autophagy, in conjunction with pattern recognition receptors synergistically inducing the production of interferon (IFN), constitutes an important pathway for the body to resist viral infections. Rubicon, a Run domain Beclin 1-interacting and cysteine-rich domain protein, has an inhibitory effect on autophagy and IFN production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!