Significance: Mueller-matrix polarimetry is a powerful method allowing for the visualization of malformations in biological tissues and quantitative evaluation of alterations associated with the progression of various diseases. This approach, in fact, is limited in observation of spatial localization and scale-selective changes in the poly-crystalline compound of tissue samples.

Aim: We aimed to improve the Mueller-matrix polarimetry approach by implementing the wavelet decomposition accompanied with the polarization-singular processing for express differential diagnosis of local changes in the poly-crystalline structure of tissue samples with various pathology.

Approach: Mueller-matrix maps obtained experimentally in transmitted mode are processed utilizing a combination of a topological singular polarization approach and scale-selective wavelet analysis for quantitative assessment of the adenoma and carcinoma histological sections of the prostate tissues.

Results: A relationship between the characteristic values of the Mueller-matrix elements and singular states of linear and circular polarization is established within the framework of the phase anisotropy phenomenological model in terms of linear birefringence. A robust method for expedited (up to ) polarimetric-based differential diagnosis of local variations in the poly-crystalline structure of tissue samples containing various pathology abnormalities is introduced.

Conclusions: The benign and malignant states of the prostate tissue are identified and assessed quantitatively with a superior accuracy provided by the developed Mueller-matrix polarimetry approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329407PMC
http://dx.doi.org/10.1117/1.JBO.28.10.102903DOI Listing

Publication Analysis

Top Keywords

mueller-matrix polarimetry
12
wavelet decomposition
8
polarization-singular processing
8
changes poly-crystalline
8
polarimetry approach
8
differential diagnosis
8
diagnosis local
8
poly-crystalline structure
8
structure tissue
8
tissue samples
8

Similar Publications

Purpose: Diffusion magnetic resonance imaging (dMRI) quantitatively estimates brain microstructure, diffusion tractography being one clinically utilized framework. To advance such dMRI approaches, direct quantitative comparisons between microscale anisotropy and orientation are imperative. Complete backscattering Mueller matrix polarized light imaging (PLI) enables the imaging of thin and thick tissue specimens to acquire numerous optical metrics not possible through conventional transmission PLI methods.

View Article and Find Full Text PDF

Polarimetry terahertz imaging of human breast cancer surgical specimens.

J Med Imaging (Bellingham)

November 2024

University of Arkansas, Department of Electrical Engineering and Computer Science, Fayetteville, Arkansas, United States.

Article Synopsis
  • The study focuses on using terahertz (THz) polarimetry imaging to enhance contrast between cancerous tissue and healthy tissue in human breast cancer specimens.
  • It utilizes multiple polarizations to capture how cancerous cells interact differently with THz electric fields compared to healthy cells, aiming for better image clarity.
  • Results show that cross-polarization signals are dependent on tissue orientation, revealing patterns that help differentiate between various tissue types, indicating THz polarimetry's potential for improved imaging in tumor analysis.
View Article and Find Full Text PDF

Achilles tendon injuries, as a widely existing disease, have attracted a lot of research interest. Mueller matrix polarimetry, as a novel label-free quantitative imaging method, has been widely used in various applications of lesion identification and pathological diagnosis. However, focusing on the recovery process of Achilles tendon injuries, current optical imaging methods have not yet achieved the label-free precise identification and quantitative evaluation.

View Article and Find Full Text PDF

Computational Mueller matrix polarimetry holds great promise in biomedical studies and clinical applications, providing comprehensive polarization-related vectorial information within the sample. For backscattering polarization imaging systems aimed at in vivo tissue polarimetry, the measurement results can be affected by the Cartesian coordinates transformation due to the vectorial properties of polarized light and the non-collinear characteristics of the measurement system. It can influence the reliability of polarization information decoding and extraction.

View Article and Find Full Text PDF
Article Synopsis
  • * It introduces reflection-mode polarimetric imaging as a method to identify non-fat regions before using a specific type of MS called picosecond infrared laser mass spectrometry (PIRL-MS), which helps avoid contamination and enhances data quality.
  • * The integration of polarimetric techniques with PIRL-MS successfully identified several breast cancer markers, indicating that this combined approach can effectively optimize molecular analysis of tissues.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!