Biomechanical effects of the medial meniscus horizontal tear and the resection strategy on the rabbit knee joint under resting state: finite element analysis.

Front Bioeng Biotechnol

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

Published: June 2023

The biomechanical changes following meniscal tears and surgery could lead to or accelerate the occurrence of osteoarthritis. The aim of this study was to investigate the biomechanical effects of horizontal meniscal tears and different resection strategies on a rabbit knee joint by finite element analysis and to provide reference for animal experiments and clinical research. Magnetic resonance images of a male rabbit knee joint were used to establish a finite element model with intact menisci under resting state. A medial meniscal horizontal tear was set involving 2/3 width of a meniscus. Seven models were finally established, including intact medial meniscus (IMM), horizontal tear of the medial meniscus (HTMM), superior leaf partial meniscectomy (SLPM), inferior leaf partial meniscectomy (ILPM), double-leaf partial meniscectomy (DLPM), subtotal meniscectomy (STM), and total meniscectomy (TTM). The axial load transmitted from femoral cartilage to menisci and tibial cartilage, the maximum von Mises stress and the maximum contact pressure on the menisci and cartilages, the contact area between cartilage to menisci and cartilage to cartilage, and absolute value of the meniscal displacement were analyzed and evaluated. The results showed that the HTMM had little effect on the medial tibial cartilage. After the HTMM, the axial load, maximum von Mises stress and maximum contact pressure on the medial tibial cartilage increased 1.6%, 1.2%, and 1.4%, compared with the IMM. Among different meniscectomy strategies, the axial load and the maximum von Mises stress on the medial menisci varied greatly. After the HTMM, SLPM, ILPM, DLPM, and STM, the axial load on medial menisci decreased 11.4%, 42.2%, 35.4% 48.7%, and 97.0%, respectively; the maximum von Mises stress on medial menisci increased 53.9%, 62.6%, 156.5%, and 65.5%, respectively, and the STM decreased 57.8%, compared to IMM. The radial displacement of the middle body of the medial meniscal was larger than any other part in all the models. The HTMM led to few biomechanical changes in the rabbit knee joint. The SLPM showed minimal effect on joint stress among all resection strategies. It is recommended to preserve the posterior root and the remaining peripheral edge of the meniscus during surgery for an HTMM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324406PMC
http://dx.doi.org/10.3389/fbioe.2023.1164922DOI Listing

Publication Analysis

Top Keywords

rabbit knee
16
knee joint
16
axial load
16
maximum von
16
von mises
16
mises stress
16
medial meniscus
12
horizontal tear
12
finite element
12
partial meniscectomy
12

Similar Publications

Background And Aim: Goupi Plaster (GP) is topical traditional Chinese medicine preparation. It has been used to treat Knee Osteoarthritis (KOA) in clinical practice of traditional Chinese medicine (TCM). However, the mechanisms of GP relieve KOA are poorly understood.

View Article and Find Full Text PDF

Purpose: This study aimed to compare the effects of four sterilization techniques on meniscal allograft transplantation (MAT) in rabbits.

Methods: In total, 85 medial or lateral meniscuses were obtained from 22 adult New Zealand white rabbits. These 85 meniscal allografts were seeded with () and randomly divided into five groups (= 17): iodine group, Cobalt-60 group, glutaraldehyde group, ethylene oxide group and control group.

View Article and Find Full Text PDF

Osteoarthritis (OA), a prevalent joint disorder, can lead to disability, with no effective treatment available. Interleukin-1 (IL-1) plays a crucial role in the progression of OA, and its receptor antagonist (IL-1Ra), a natural IL-1 inhibitor, represents a promising therapeutic target by obstructing the IL-1 signaling pathway. This study delivered IL-1Ra via adeno-associated virus (AAV), a gene therapy vector enabling long-term protein expression, to treat knee osteoarthritis (KOA) in animal models.

View Article and Find Full Text PDF

Aims: Magnesium ions (Mg) play an important role in promoting cartilage repair in cartilage lesions. However, no research has focused on the role of Mg combined with microfracture (MFX) in hyaline-like cartilage repair mediated by cartilage injury. This study aimed to investigate the beneficial effects of the combination of MFX and Mg in cartilage repair.

View Article and Find Full Text PDF

Objective: Osteoarthritis (OA) is a degenerative joint disease that has no cure, and current therapies are intended to minimize pain. There is, therefore, a need for effective pharmacologic agents that reverse or slow the progression of joint damage. We report herein on an investigation of the effects of intra-articular injections of ganglioside sugars on the progression of OA in an experimental rabbit model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!