Feedback of power during running is a promising tool for training and determining pacing strategies. However, current power estimation methods show low validity and are not customized for running on different slopes. To address this issue, we developed three machine-learning models to estimate peak horizontal power for level, uphill, and downhill running using gait spatiotemporal parameters, accelerometer, and gyroscope signals extracted from foot-worn IMUs. The prediction was compared to reference horizontal power obtained during running on a treadmill with an embedded force plate. For each model, we trained an elastic net and a neural network and validated it with a dataset of 34 active adults across a range of speeds and slopes. For the uphill and level running, the concentric phase of the gait cycle was considered, and the neural network model led to the lowest error (median ± interquartile range) of 1.7% ± 12.5% and 3.2% ± 13.4%, respectively. The eccentric phase was considered relevant for downhill running, wherein the elastic net model provided the lowest error of 1.8% ± 14.1%. Results showed a similar performance across a range of different speed/slope running conditions. The findings highlighted the potential of using interpretable biomechanical features in machine learning models for the estimating horizontal power. The simplicity of the models makes them suitable for implementation on embedded systems with limited processing and energy storage capacity. The proposed method meets the requirements for applications needing accurate near real-time feedback and complements existing gait analysis algorithms based on foot-worn IMUs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324974 | PMC |
http://dx.doi.org/10.3389/fbioe.2023.1167816 | DOI Listing |
PLoS One
January 2025
North China University of Water Resources and Electric Power, Zhengzhou City, Henan Province, P.R. China.
This study employs electrical resistivity tomography (ERT) to experimentally investigate the migration characteristics of light non-aqueous phase liquids (LNAPL) under various groundwater conditions. Through cross-hole measurements and time-lapse inversion, the migration process of LNAPL under three scenarios-unsaturated conditions, constant groundwater levels, and declining water levels-was systematically analyzed. The results indicate that LNAPL migration behavior exhibits significant differences under different conditions.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
January 2025
Department of Sports Training Science-Combats, National Taiwan Sport University, Taoyuan City 333, Taiwan.
Background/objectives: The underlying mechanisms of taekwondo-specific jumping ability among different competition levels are still unknown. This study aimed to compare vertical and horizontal stretch-shortening cycle (SSC) performance between athletes of different competitive levels and examine the relationships of force and power production abilities between those two directions in Taiwanese collegiate-level male taekwondo athletes.
Methods: Seventeen male collegiate taekwondo athletes were divided into two groups: medalists (MG, n = 8) and non-medalists (NMG, n = 9); both groups performed countermovement jumps (CMJ) on a force platform and single-leg lateral hops (SLLHs) via an optoelectronic measurement system.
Front Psychol
January 2025
Intercollegiate Athletics, University of Michigan, Ann Arbor, MI, United States.
Objective: Wrestling is a complex sport that requires a combination of strength, endurance, and wrestling-specific technical training. Endurance activities, such as running, are commonly performed for rapid weight reduction before competition. However, these activities can severely disrupt recovery and lead to significant declines in performance.
View Article and Find Full Text PDFSci Rep
January 2025
School of Chemistry and Chemical Engineering, Heze University, Heze, 274015, People's Republic of China.
A novel adsorbent ZnAl-LDHs/SiO (ZA/SiO) was prepared by blending urea mixture of ZnSO and Al(SO) while using SiO as a support form. The adsorption properties of ZA/SiO for the removal of toxic metal ions (Cu(II) and Cr(VI)) from water were evaluated. By batch experiment method to investigate the ZA/SiO adsorption of Cu(II) and Cr(VI) solution treatment effect.
View Article and Find Full Text PDFSoc Sci Med
January 2025
Erasmus School of Health Policy & Management, Erasmus University Rotterdam, Postbus 1738, 3000 DR, Rotterdam, the Netherlands. Electronic address:
Fragmented care systems, characterized by horizontal and vertical boundaries, hinder interprofessional collaboration for individuals with complex care needs. This study explores how frontline professionals navigate these boundaries to foster collaboration within a national program promoting integrated care for individuals with 'misunderstood behaviour' in the Netherlands. Using a boundary work lens, we analysed 44 semi-structured interviews with frontline professionals from the social, care, and safety domains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!