The use of the RICE (Rest, Ice, Compression, Elevation) protocol has been the preferred method of treatment for acute musculoskeletal injuries for decades. However, the efficacy of using ice as a recovery strategy following injury in humans remains uncertain, and there is a growing trend recommending against icing following injury. Animal models suggest that while ice can help to accelerate the recovery process, extreme muscle cooling might delay repair and increase muscle scarring. Despite the conflicting evidence, ice should not be dismissed as a potential treatment option. When considering what is known about the injury cascade, the optimal application window for ice is in the immediate acute stage following injury to reduce the proliferation of secondary tissue damage that occurs in the hours after the initial injury. Practitioners should tailor the application of ice based on the injury timeline and repair process, consistent with applications in 20-30 minute intervals within the first 12 hours post-injury. Until the evidence unanimously proves otherwise, the culture of icing injuries should remain a staple in sports medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324284PMC
http://dx.doi.org/10.26603/001c.74273DOI Listing

Publication Analysis

Top Keywords

ice
7
injury
6
ice age?
4
age? rice
4
rice rest
4
rest ice
4
ice compression
4
compression elevation
4
elevation protocol
4
protocol preferred
4

Similar Publications

Sea ice can profoundly influence photosynthetic organisms by altering subsurface irradiance, but it is susceptible to changes in the climate. The patterns and timing of sea ice cover can vary on a monthly to annual timescale in small sub-regions of the Western Antarctic Peninsula (WAP). During the latter part of the 20th century, sea ice coverage significantly decreased in the WAP, a trend that aligns with warming in this area.

View Article and Find Full Text PDF

Unprecedented East Siberian wildfires intensify Arctic snow darkening through enhanced poleward transport of black carbon.

Sci Total Environ

January 2025

School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Summer Arctic black carbon (BC) predominantly originates from boreal wildfires, significantly contributing to Arctic warming. This study examined the impact of MODIS-detected extensive East Siberian wildfires from 2019 to 2021 on Arctic BC and the associated radiative effects using GEOS-Chem and SNICAR simulations. During these years, Arctic surface BC aerosol concentrations rose to 46 ng m, 43 ng m, and 59 ng m, nearly doubling levels from the low-fire year of 2022.

View Article and Find Full Text PDF

Evidence for low bioavailability of dietary nanoparticulate cerium in a freshwater food chain.

Aquat Toxicol

December 2024

ANSTO, Nuclear Science and Technology Division, Lucas Heights, NSW 2234, Australia.

Radioactive Ce in ionic (I-Ce), nano (N-Ce, 11 ± 9 nm mean primary particle size ± standard deviation) and micron-sized (M-Ce, 530 ± 440 µm) forms associated with natural and artificial diets in natural river water and synthetic freshwater were used to measure the real-time biokinetics of dietary Ce assimilation in a freshwater food chain. The model food chain consisted of microalgae (Raphidocelis subcapitata), snails (Potamopyrgus antipodarum) and prawns (Macrobrachium australiense). Pulse-chase experiments showed that 91-100 % of all forms of cerium associated with all diets and water types were eliminated from the digestive system of the snail and prawn within 24 h, with no detectable cerium assimilation.

View Article and Find Full Text PDF

Background: Leptospirosis is a widespread zoonosis caused by bacteria in the genus Leptospira. Basic epidemiological information is crucial to mitigating disease risk but is lacking for leptospirosis; notably, the hosts responsible for maintaining Leptospira remain largely unknown. Frequently observed near human habitations, hedgehogs (Erinaceus europaeus) are taken to wildlife rescue centres when found sick or injured.

View Article and Find Full Text PDF

Ice plant () is a vegetable with various therapeutic uses, one of which is its ability to prevent diabetes. The present study examined the insulin secretion effect related to the mechanism of action of ice plant extract (IPE) and its active compound D-pinitol in a rat insulin-secreting β-cell line, INS-1, as well as in diabetic rats. : The glucose-stimulated insulin secretion (GSIS) test and Western blotting were used to measure GSIS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!