A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hepatic COX1 loss leads to impaired autophagic flux and exacerbates nonalcoholic steatohepatitis. | LitMetric

The mechanisms underlying autophagic defects in nonalcoholic steatohepatitis (NASH) remain largely unknown. We aimed to elucidate the roles of hepatic cyclooxygenase 1 (COX1) in autophagy and the pathogenesis of diet-induced steatohepatitis in mice. Human nonalcoholic fatty liver disease (NAFLD) liver samples were used to examine the protein expression of COX1 and the level of autophagy. mice and their wildtype littermates were generated and fed with 3 different NASH models. We found that hepatic COX1 expression was increased in patients with NASH and diet-induced NASH mice models accompanied by impaired autophagy. COX1 was required for basal autophagy in hepatocytes and liver specific COX1 deletion exacerbated steatohepatitis by inhibiting autophagy. Mechanistically, COX1 directly interacted with WD repeat domain, phosphoinositide interacting 2 (WIPI2), which was crucial for autophagosome maturation. Adeno-associated virus (AAV)-mediated rescue of WIPI2 reversed the impaired autophagic flux and improved NASH phenotypes in mice, indicating that COX1 deletion-mediated steatohepatitis was partially dependent on WIPI2-mediated autophagy. In conclusion, we demonstrated a novel role of COX1 in hepatic autophagy that protected against NASH by interacting with WIPI2. Targeting the COX1-WIPI2 axis may be a novel therapeutic strategy for NASH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326296PMC
http://dx.doi.org/10.1016/j.apsb.2023.03.008DOI Listing

Publication Analysis

Top Keywords

hepatic cox1
8
impaired autophagic
8
autophagic flux
8
nonalcoholic steatohepatitis
8
cox1
8
interacting wipi2
8
nash
7
autophagy
7
steatohepatitis
5
hepatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!