The non-selective opioid receptor antagonist, naltrexone is one of the most prescribed medications for treating alcohol and opioid addiction. Despite decades of clinical use, the mechanism(s) by which naltrexone reduces addictive behavior remains unclear. Pharmaco-fMRI studies to date have largely focused on naltrexone's impact on brain and behavioral responses to drug or alcohol cues or on decision-making circuitry. We hypothesized that naltrexone's effects on reward-associated brain regions would associate with reduced attentional bias (AB) to non-drug, reward-conditioned cues. Twenty-three adult males, including heavy and light drinkers, completed a two-session, placebo-controlled, double-blind study testing the effects of acute naltrexone (50 mg) on AB to reward-conditioned cues and neural correlates of such bias measured via fMRI during a reward-driven AB task. While we detected significant AB to reward-conditioned cues, naltrexone did not reduce this bias in all participants. A whole-brain analysis found that naltrexone significantly altered activity in regions associated with visuomotor control regardless of whether a reward-conditioned distractor was present. A region-of-interest analysis of reward-associated areas found that acute naltrexone increased BOLD signal in the striatum and pallidum. Moreover, naltrexone effects in the pallidum and putamen predicted individual reduction in AB to reward-conditioned distractors. These findings suggest that naltrexone's effects on AB primarily reflect not reward processing per se, but rather top-down control of attention. Our results suggest that the therapeutic actions of endogenous opioid blockade may reflect changes in basal ganglia function enabling resistance to distraction by attractive environmental cues, which could explain some variance in naltrexone's therapeutic efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328541 | PMC |
http://dx.doi.org/10.1016/j.addicn.2023.100085 | DOI Listing |
Front Hum Neurosci
April 2024
Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
Introduction: Attentional bias to reward-associated stimuli can occur even when it interferes with goal-driven behavior. One theory posits that dopaminergic signaling in the striatum during reward conditioning leads to changes in visual cortical and parietal representations of the stimulus used, and this, in turn, sustains attentional bias even when reward is discontinued. However, only a few studies have examined neural activity during both rewarded and unrewarded task phases.
View Article and Find Full Text PDFPsychophysiology
July 2024
Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey, USA.
The Predatory Imminence Continuum Theory proposes that defensive behaviors depend on the proximity of a threat. While the neural mechanisms underlying this proposal are well studied in animal models, it remains poorly understood in humans. To address this issue, we recorded EEG from 24 (15 female) young adults engaged in a first-person virtual reality Risk-Reward interaction task.
View Article and Find Full Text PDFAddict Neurosci
September 2023
Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina, USA.
The non-selective opioid receptor antagonist, naltrexone is one of the most prescribed medications for treating alcohol and opioid addiction. Despite decades of clinical use, the mechanism(s) by which naltrexone reduces addictive behavior remains unclear. Pharmaco-fMRI studies to date have largely focused on naltrexone's impact on brain and behavioral responses to drug or alcohol cues or on decision-making circuitry.
View Article and Find Full Text PDFNeuropsychopharmacology
July 2021
Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA.
Individuals who abuse alcohol often show exaggerated attentional bias (AB) towards alcohol-related cues, which is thought to reflect reward conditioning processes. Rodent studies indicate that dopaminergic pathways play a key role in conditioned responses to reward- and alcohol-associated cues. However, investigation of the dopaminergic circuitry mediating this process in humans remains limited.
View Article and Find Full Text PDFSci Rep
November 2018
Key Laboratories for Germplasm Resources of Forest Trees and Forest Protection of Hebei Province, College of Forestry, Agricultural University of Hebei, Baoding, Hebei, China.
Color cues play a key role in the location of hosts and host habitats; learning behavior can allow parasitoids to explore different hosts and reduce environmental uncertainty. However, it remains unclear whether the parasitic beetle Dastarcus helophoroides (Fairmaire) uses and learns visual cues to locate oviposition sites. In this study, we investigated the ability of females to respond to colors and associate the presence of a simulated oviposition site-wood with a trough-with colored substrates after training.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!