A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The role of climate change and niche shifts in divergent range dynamics of a sister-species pair. | LitMetric

Species ranges are set by limitations in factors including climate tolerances, habitat use, and dispersal abilities. Understanding the factors governing species range dynamics remains a challenge that is ever more important in our rapidly changing world. Species ranges can shift if environmental changes affect available habitat, or if the niche or habitat connectivity of a species changes. We tested how changes in habitat availability, niche, or habitat connectivity could contribute to divergent range dynamics in a sister-species pair. The great-tailed grackle () has expanded its range northward from Texas to Nebraska in the past 40 years, while its closest relative, the boattailed grackle (), has remained tied to the coasts of the Atlantic Ocean and the Gulf of Mexico as well as the interior of Florida. We created species distribution and connectivity models trained on citizen science data from 1970-1979 and 2010-2019 to determine how the availability of habitat, the types of habitat occupied, and range-wide connectivity have changed for both species. We found that the two species occupy distinct habitats and that the great-tailed grackle has shifted to occupy a larger breadth of urban, arid environments farther from natural water sources. Meanwhile, the boattailed grackle has remained limited to warm, wet, coastal environments. We found no evidence that changes in habitat connectivity affected the ranges of either species. Overall, our results suggest that the great-tailed grackle has shifted its realized niche as part of its rapid range expansion, while the range dynamics of the boat-tailed grackle may be shaped more by climate change. The expansion in habitats occupied by the great-tailed grackle is consistent with observations that species with high behavioral flexibility can rapidly expand their geographic range by using human-altered habitat. This investigation identifies how opposite responses to anthropogenic change could drive divergent range dynamics, elucidating the factors that have and will continue to shape species ranges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328137PMC
http://dx.doi.org/10.24072/pcjournal.248DOI Listing

Publication Analysis

Top Keywords

range dynamics
20
great-tailed grackle
16
divergent range
12
species ranges
12
habitat connectivity
12
species
10
habitat
9
climate change
8
range
8
dynamics sister-species
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!