RAB11 small GTPases and associated recycling endosome have been localized to mitotic spindles and implicated in regulating mitosis. However, the physiological significance of such regulation has not been observed in mammalian tissues. We have used newly engineered mouse models to investigate intestinal epithelial renewal in the absence of single or double isoforms of RAB11 family members: Rab11a and Rab11b. Comparing with single knockouts, mice with compound ablation demonstrate a defective cell cycle entry and robust mitotic arrest followed by apoptosis, leading to a total penetrance of lethality within 3 days of gene ablation. Upon Rab11 deletion ex vivo, enteroids show abnormal mitotic spindle formation and cell death. Untargeted proteomic profiling of Rab11a and Rab11b immunoprecipitates has uncovered a shared interactome containing mitotic spindle microtubule regulators. Disrupting Rab11 alters kinesin motor KIF11 function and impairs bipolar spindle formation and cell division. These data demonstrate that RAB11A and RAB11B redundantly control mitotic spindle function and intestinal progenitor cell division, a mechanism that may be utilized to govern the homeostasis and renewal of other mammalian tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481667 | PMC |
http://dx.doi.org/10.15252/embr.202256240 | DOI Listing |
Ital J Pediatr
October 2024
Department of Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Children's Medical Center of Anhui Medical University, No. 39, Wangjiang Road, Hefei, 230051, Anhui, China.
Background: Nephrotic syndrome (NPHS), characterized by proteinuria, hypoalbuminemia, and edema, can be caused by genetic variations. TBC1D8B was recently discovered as a novel disease-causing gene for X-linked NPHS. With only a few reported cases, the clinical manifestations associated with variants of this gene need to be further examined.
View Article and Find Full Text PDFNat Commun
October 2024
State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
The cortical cytoskeleton of subpellicular microtubules (SPMTs) supports the Plasmodium ookinete morphogenesis during mosquito transmission of malaria. SPMTs are hypothesized to function as the cytoskeletal tracks in motor-driven cargo transport for apical organelle and structure assembly in ookinetes. However, the SPMT-based transport motor has not been identified in the Plasmodium.
View Article and Find Full Text PDFJ Biomed Sci
June 2024
Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Background: Enterovirus 71 (EV-A71) causes Hand, Foot and Mouth Disease (HFMD) in children and has been associated with neurological complications. The molecular mechanisms involved in EV-A71 pathogenesis have remained elusive.
Methods: A siRNA screen in EV-A71 infected-motor neurons was performed targeting 112 genes involved in intracellular membrane trafficking, followed by validation of the top four hits using deconvoluted siRNA.
Commun Biol
May 2024
National Key Laboratory of Veterinary Public Health Safety and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
Apicomplexan parasites harbor a complex endomembrane system as well as unique secretory organelles. These complex cellular structures require an elaborate vesicle trafficking system, which includes Rab GTPases and their regulators, to assure the biogenesis and secretory of the organelles. Here we exploit the model apicomplexan organism Toxoplasma gondii that encodes a family of Rab GTPase Activating Proteins, TBC (Tre-2/Bub2/Cdc16) domain-containing proteins.
View Article and Find Full Text PDFPathophysiology
February 2024
Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
Abnormal nucleotide insertions of C9orf72, which forms a complex with Smith-Magenis syndrome chromosomal region candidate gene 8 (SMCR8) protein and WD repeat-containing protein 41 (WDR41) protein, are associated with an autosomal-dominant neurodegenerative frontotemporal dementia and/or amyotrophic lateral sclerosis type 1 (FTDALS1). The differentially expressed in normal and neoplastic cells (DENN) domain-containing C9orf72 and its complex with SMCR8 and WDR41 function as a guanine-nucleotide exchange factor for Rab GTP/GDP-binding proteins (Rab GEF, also called Rab activator). Among Rab proteins serving as major effectors, there exists Rab11a.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!