AI Article Synopsis

  • BRAF inhibitors are effective against melanoma and other cancers, and this study focuses on imidazo[2,1-b]oxazole derivatives as potential mutant BRAF kinase inhibitors.
  • The researchers utilized 3D-QSAR, molecular docking, and molecular dynamics simulations to evaluate these compounds, creating strong predictive models (CoMSIA/SEHA) that indicated promising anti-cancer activity and stability in the receptor's active site.
  • Four inhibitors (T1-T4) were identified with favorable binding free energies and good ADMET properties, suggesting their potential for further development as anticancer medications.

Article Abstract

BRAF inhibitors are known to be an effective therapeutic target for treating melanoma and other types of cancer. Using 3D-QSAR, molecular docking, and MD simulations, this study evaluated various imidazo[2,1-b]oxazole derivatives that function as mutant BRAF kinase inhibitors. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were used to create the 3D-QSAR models. CoMSIA/SEHA model has solid predictive power across several models (Q = 0.578; R = 0.828; R = 0.74) and is the best model according to the numerous field models generated. The created model's predictive power was evaluated through external validation using a test set. CoMSIA/SEHA contour maps collect information that can be used to identify critical regions with solid anticancer activity. We developed four inhibitors with high predicted activity due to these observations. ADMET prediction was used to assess the toxicity of the proposed imidazo[2,1-b]oxazole compounds. The predictive molecules (T-T) demonstrated good ADMET properties, excluding the toxic active compounds 11r from the database. Molecular docking was also used to determine the patterns and modes of interactions between imidazo[2,1-b]oxazole ligands and receptors, which revealed that the proposed imidazo[2,1-b]oxazole scaffold was stable in the receptor's active site (PDB code: 4G9C). The suggested compounds (T1-T4) were subjected to molecular dynamics simulations lasting 100 ns to determine their binding free energies. The results showed that T had a more favorable binding free energy (-149.552 kJ/mol) than T (-112.556 kJ/mol), T (-115.503 kJ/mol), and T (-102.553 kJ/mol). The results suggest that the imidazo[2,1-b]oxazole compounds investigated in this study have potential as inhibitors of BRAF kinase and could be further developed as anticancer drugs. Highlights22 imidazo[2,1-b]oxazole compounds were subjected to research on three-dimensional quantitative conformational relationships.Using contour maps from 3D-QSAR models as a guide was used to figure out the areas and strategies for structural optimization.Combined molecular docking, molecular dynamics simulations, and binding free energy calculations to verify the inhibitor activity of the proposed 22 imidazo[2,1-b]oxazole compounds.Four potential B-RAF Kinase inhibitors were discovered, providing theoretical clues for developing a highly anticancer agent.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2233629DOI Listing

Publication Analysis

Top Keywords

molecular docking
16
braf kinase
12
kinase inhibitors
12
molecular dynamics
12
proposed imidazo[21-b]oxazole
12
imidazo[21-b]oxazole compounds
12
binding free
12
molecular
9
imidazo[21-b]oxazole
8
imidazo[21-b]oxazole derivatives
8

Similar Publications

Cytotoxic and Noncytotoxic Steroidal Constituents of .

J Nat Prod

January 2025

Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States.

(-)-Cryptanoside A () was identified previously as a major cytotoxic component of the stems of collected in Laos, which mediates its activity by targeting Na/K-ATPase (NKA), with hydrogen bonds formed between its 11- and 4'-hydroxy groups and NKA being observed in its docking profile. In a continuing investigation, and its 17-epimer, (-)-17--cryptanoside A (), and the new (+)-2-hydroxyandrosta-4,6-diene-3-one-17-carboxylic acid () and the known (+)-2,21-dihydroxypregna-4,6-diene-3,20-dione or 2-hydroxy-6,7-didehydrocortexone () pregnane-type steroids were isolated from . In addition, (-)-11,4'-di--acetylcryptanoside A () has been synthesized from the acetylation of .

View Article and Find Full Text PDF

Design and Synthesis of Topoisomerases-Histone Deacetylase Dual Targeted Quinoline-Bridged Hydroxamates as Anticancer Agents.

J Med Chem

January 2025

Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.

The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.

View Article and Find Full Text PDF

Background: Fracture disrupts the integrity and continuity of the bone, leading to symptoms such as pain, tenderness, swelling, and bruising. Rhizoma Musae is a medicinal material frequently utilized in the Miao ethnic region of Guizhou Province, China. However, its specific mechanism of action in treating fractures remains unknown.

View Article and Find Full Text PDF

Novel Protective Role for Gut Microbiota-derived Metabolite PAGln in Doxorubicin-induced Cardiotoxicity.

Cardiovasc Drugs Ther

January 2025

Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Purpose: Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).

Methods: DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is associated with cognitive impairments which are linked to a deficit in cholinergic function. The objective of this study was to evaluate the ability of TeMac™ to prevent memory impairment in scopolamine-rats model of Alzheimer's disease and by in silico approaches to identify molecules in TeMac™ inhibiting acetylcholinesterase. The cholinergic cognitive dysfunction was induced by intraperitoneal injection of scopolamine (1 mg/kg daily) in male Wistar rats for seven consecutive days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!