Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The highly flexible nature of can be owed to its tough cell wall and multiple gene interaction system which makes it resistant to frontline TB drugs. Mycolic acids are the key components of the unique cell wall that protects the organism from external threats. Proteins of the fatty acid synthesis pathway are evolutionarily conserved that enables cellular survival in harsh conditions and hence have become attractive targets. Malonyl Co-A Acyl carrier protein transacylase (FabD; MCAT, EC2.3.1.39) is an enzyme in the branching point of the unique and vast fatty acid synthase (FAS-I and FAS-II) systems of In the present investigation, structure based drug discovery with the compounds from an open source library (NPASS) is used for target fishing and employed to understand the interaction with the target protein FabD. The potential hit compounds were filtered using exhaustive docking, considering the binding energy, key residue interaction and drug likeness property. Three compounds from the library namely NPC475074 (Hit 1), NPC260631 (Hit 2) and NPC313985 (Hit 3) with binding energies -14.45, -13.29 and -12.37 respectively were taken for molecular dynamic simulation. The results suggested that Hit 3 (NPC313985) has stable interaction with FabD protein. This article further elaborates the interaction of the identified novel compounds Hit 1 and Hit 3 along with the other known compound (Hit 2) against FabD protein. The hit compounds identified from this study could be further evaluated against mutated FabD protein and considered for evaluation.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2023.2233622 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!