As a versatile polymer in many applications, synthesized polyethylenimine (PEI) is polydisperse with diverse branched structures that attain pH-dependent protonation states. Understanding the structure-function relationship of PEI is necessary for enhancing its efficacy in various applications. Coarse-grained (CG) simulations can be performed at length and time scales directly comparable with experimental data while maintaining the molecular perspective. However, manually developing CG forcefields for complex PEI structures is time-consuming and prone to human errors. This article presents a fully automated algorithm that can coarse-grain any branched architecture of PEI from its all-atom (AA) simulation trajectories and topology. The algorithm is demonstrated by coarse-graining a branched 2 kDa PEI, which can replicate the AA diffusion coefficient, radius of gyration, and end-to-end distance of the longest linear chain. Commercially available 25 and 2 kDa Millipore-Sigma PEIs are used for experimental validation. Specifically, branched PEI architectures are proposed, coarse-grained using the automated algorithm, and then simulated at different mass concentrations. The CG PEIs can reproduce existing experimental data on PEI's diffusion coefficient and Stokes-Einstein radius at infinite dilution as well as its intrinsic viscosity. This suggests a strategy where probable chemical structures of synthetic PEIs can be inferred computationally using the developed algorithm. The coarse-graining methodology presented here can also be extended to other polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.3c00103 | DOI Listing |
HGG Adv
January 2025
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
DP Technology, Beijing, 100080, China.
Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.
The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets.
View Article and Find Full Text PDFHum Genet
January 2025
Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan.
There are hundreds of rare syndromic diseases involving hearing loss, many of which are not targeted for clinical genetic testing. We systematically explored the genetic causes of undiagnosed syndromic hearing loss using a combination of whole exome sequencing (WES) and a phenotype similarity search system called PubCaseFinder. Fifty-five families with syndromic hearing loss of unknown cause were analyzed using WES after prescreening of several deafness genes depending on patient clinical features.
View Article and Find Full Text PDFClin J Gastroenterol
January 2025
University of Connecticut, Connecticut, USA.
Marginal ulcers are a common complication following Roux-en-Y bypass surgeries with an approximate incidence of 4.6%. The pathophysiology is complex and risk factors include smoking, nonsteroidal anti-inflammatory drugs (NSAIDs) use, Helicobacter pylori infection, and a larger pouch size.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!