The farnesoid X receptor (FXR) is a ligand-activated nuclear receptor. Activation of FXR significantly impacts the expressions of the pivotal genes involved in bile acid metabolism, inflammation, fibrosis, and homeostasis of lipid and glucose, leading to considerable interests in developing FXR agonists for the treatment of nonalcoholic steatohepatitis (NASH) or other FXR-relevant diseases. Herein, we describe the design, optimization, and characterization of a series of -methylene-piperazinyl derivatives as the nonbile acid FXR agonists. Particularly, compound (), a potent full FXR agonist, shows high selectivity, favorable ADME and pharmacokinetics profile, along with favorable activities demonstrated in both rodent PD model and HFD-CCl model and is currently in clinical development in patients with NASH in phase II.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.3c00456DOI Listing

Publication Analysis

Top Keywords

nonbile acid
8
acid fxr
8
fxr agonist
8
currently clinical
8
clinical development
8
treatment nonalcoholic
8
nonalcoholic steatohepatitis
8
fxr agonists
8
fxr
6
discovery hpg1860
4

Similar Publications

The discovery of a new nonbile acid modulator of Takeda G protein-coupled receptor 5: An integrated computational approach.

Arch Pharm (Weinheim)

January 2025

Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.

The Takeda G protein-coupled receptor 5 (TGR5), also known as GPBAR1 (G protein-coupled bile acid receptor), is a membrane-type bile acid receptor that regulates blood glucose levels and energy expenditure. These essential functions make TGR5 a promising target for the treatment of type 2 diabetes and metabolic disorders. Currently, most research on developing TGR5 agonists focuses on modifying the structure of bile acids, which are the endogenous ligands of TGR5.

View Article and Find Full Text PDF

Ampelopsis grossedentata tea alleviating liver fibrosis in BDL-induced mice via gut microbiota and metabolite modulation.

NPJ Sci Food

November 2024

TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.

Liver fibrosis (LF) is a common sequela to diverse chronic liver injuries, leading to rising rates of cirrhosis and hepatocellular carcinoma (HCC). As the medicinal and edible homologous material, traditional teas have exhibited promising applications in the clinical management of liver fibrosis. Here, we generated a liver fibrosis mouse model to explore the potent therapeutic ability of Ampelopsis grossedentata (AG) tea on this condition by multi-omics analysis.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a multifactorial chronic inflammation of the intestine and has become a global public health concern. A farnesoid X receptor (FXR) was recently reported to play a key role in hepatic-intestinal circulation, intestinal metabolism, immunity, and microbial regulation, and thus, it becomes a promising therapeutic target for IBD. In this study, we identified a series of nonbile acid FXR agonists, in which 33 novel compounds were designed and synthesized by the structure-based drug design strategy from our previously identified hit compound.

View Article and Find Full Text PDF

Improvement of NASH and liver fibrosis through modulation of the gut-liver axis by a novel intestinal FXR agonist.

Biomed Pharmacother

April 2024

College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea. Electronic address:

Farnesoid X receptor (FXR) plays a pivotal role in the regulation of bile acid homeostasis and is involved in the pathogenesis of nonalcoholic steatohepatitis (NASH). Although FXR agonists effectively alleviate pathological features of NASH, adverse effects such as disturbance of cholesterol homeostasis and occurrence of pruritus remain to be addressed. Here, we identified a novel FXR agonist, ID119031166 (ID166), and explored the pharmacological benefits of ID166 in the treatment of NASH.

View Article and Find Full Text PDF

Farnesoid X receptor agonist tropifexor detoxifies ammonia by regulating the glutamine metabolism and urea cycles in cholestatic livers.

Eur J Pharmacol

March 2024

Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China. Electronic address:

Hyperammonemia refers to elevated levels of ammonia in the blood, which is an important pathological feature of liver cirrhosis and hepatic failure. Preclinical studies suggest tropifexor (TXR), a novel non-bile acid agonist of Farnesoid X Receptor (FXR), has shown promising effects on reducing hepatic steatosis, inflammation, and fibrosis. This study evaluates the impact of TXR on hyperammonemia in a piglet model of cholestasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!