In this paper we describe the analysis, planning, design, development, implementation and evaluation of a new online Graduate Certificate in Genomic Counselling and Variant Interpretation (GCGCVI) at The University of British Columbia (UBC). Genetic counselling is now a prerequisite for diagnostic genomic testing in many countries, demanding that genetic counselling practitioners have up-to-the-moment genomic counselling skills and knowledge. Current practitioners reported a desire for more training in this rapidly developing field: our international survey revealed substantial interest in online continuing education addressing themes such as testing and clinical bioinformatics, applied variant interpretation, evidence-based genomic counselling, and other emerging genomic topics. However, our market analysis found no post-graduate program globally that offered such training. To fill this gap, our oversight team of genetic counsellors and geneticists therefore guided development of curriculum and materials, and online learning specialists developed rigorous interactive asynchronous online graduate courses through collaboration with subject matter experts, following best practices in online learning design. Since launch in September 2020, we have gathered learner feedback using surveys and focus groups, and we have used learning analytics to understand how learners engaged with each other and with course materials. Together, these have helped us understand learner behaviour and guide the continuous process of design improvement to support the learning goals of this audience of professional learners. Our courses have been reviewed and approved by the UBC Faculty of Medicine, UBC Senate, and the Province of British Columbia Ministries of Advanced Education and Health, and assessed by the National Society of Genetic Counselors (NSGC, USA) and the Canadian Association of Genetic Counsellors (CAGC) to enable learners to receive North American continuing education credits. To date, 151 individuals from 18 countries have succeeded in one or more course and 43 have completed the entire certificate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jgc4.1737 | DOI Listing |
Diagnostics (Basel)
December 2024
Department of Laboratory Medicine, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea.
Background: The accurate interpretation of the /2 variant is critical for diagnosing and treating hereditary breast and ovarian cancers. ClinVar is a widely used public database for genetic variants. Conflicting classifications of pathogenicity can occur when different submitters categorize the same genetic variant inconsistently as pathogenic (PV), likely pathogenic (LPV), likely benign (LBV), benign (BV), or a variant of uncertain significance (VUS).
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Institute of Mathematics, University of Mannheim, 68131 Mannheim, Germany.
All characterizations of the Shannon entropy include the so-called chain rule, a formula on a hierarchically structured probability distribution, which is based on at least two elementary distributions. We show that the chain rule can be split into two natural components, the well-known additivity of the entropy in case of cross-products and a variant of the chain rule that involves only a single elementary distribution. The latter is given as a proportionality relation and, hence, allows a vague interpretation as self-similarity, hence intrinsic property of the Shannon entropy.
View Article and Find Full Text PDFInt J Cardiol
January 2025
Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padova, Italy. Electronic address:
T wave inversion (TWI) on the electrocardiogram (ECG) is a relatively common finding in athletes. It poses a diagnostic challenge, as it can indicate either a benign physiological pattern or an early sign of serious cardiac pathology. This expert opinion statement provides a comprehensive review of the current understanding of TWI in athletes, emphasizing the importance of its localization, associated clinical features, and demographic factors in guiding its interpretation and management.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.
Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.
Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.
Nucleotide sequence can be translated in three reading frames from 5' to 3' producing distinct protein products. Many examples of RNA translation in two reading frames (dual coding) have been identified so far. We report simultaneous translation of mRNA transcripts derived from locus in all three reading frames that result in the synthesis of long proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!