Determination of Interstitial Collagen Deposition and Related Topography Using the Second Harmonic Generation-Based HistoIndex Platform.

Methods Mol Biol

Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Melbourne, VIC, Australia.

Published: February 2024

AI Article Synopsis

  • Interstitial fibrosis involves the buildup of extracellular matrix, particularly collagen, in various organs, which can lead to scarring and organ dysfunction.
  • Accurate measurement of interstitial collagen is crucial for developing anti-fibrotic therapies, but current methods are usually semi-quantitative and limited.
  • The Genesis™ 200 imaging system and FibroIndex™ software offer an innovative, automated way to quantify collagen levels without staining, using second harmonic generation (SHG) for precise imaging and analysis of tissue samples.

Article Abstract

Interstitial fibrosis is characterized by the increased deposition of extracellular matrix (ECM) components within the interstitial space of various organs, such as the kidneys, heart, lungs, liver, and skin. The primary component of interstitial fibrosis-related scarring is interstitial collagen. Therefore, the therapeutic application of anti-fibrotic medication hinges on the accurate measurement of interstitial collagen levels within tissue samples. Current histological measurement techniques for interstitial collagen are generally semi-quantitative in nature and only provide a ratio of collagen levels within tissues. However, the Genesis™ 200 imaging system and supplemental image analysis software, FibroIndex™, from HistoIndex™, is a novel, automated platform for imaging and characterizing interstitial collagen deposition and related topographical properties of the collagen structures within an organ, in the absence of any staining. This is achieved by using a property of light known as second harmonic generation (SHG). Using a rigorous optimization protocol, collagen structures in tissue sections can be imaged with a high degree of reproducibility and ensures homogeneity across all samples while minimizing the introduction of any imaging artefacts or photobleaching (decreased tissue fluorescence due to prolonged exposure to the laser). This chapter outlines the protocol that should be undertaken to optimize HistoIndex scanning of tissue sections, and the outputs that can be measured and analyzed using the FibroIndex™ software.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3179-9_13DOI Listing

Publication Analysis

Top Keywords

interstitial collagen
20
collagen
8
collagen deposition
8
second harmonic
8
collagen levels
8
collagen structures
8
tissue sections
8
interstitial
7
determination interstitial
4
deposition topography
4

Similar Publications

Optimized digital workflow for pathologist-grade evaluation in bleomycin-induced pulmonary fibrosis mouse model.

Sci Rep

January 2025

Translational Research Division, Chugai Pharmaceutical Co., Ltd, 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 244-8602, Japan.

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disorder of unknown etiology, characterized by interstitial fibrosis of the lungs. Bleomycin-induced pulmonary fibrosis mouse model (BLM model) is a widely used animal model to evaluate therapeutic targets for IPF. Histopathological analysis of lung fibrosis is an important method for evaluating BLM model.

View Article and Find Full Text PDF

Introduction: Collagen is essential for maintaining lung structure and function and its remodeling has been associated with respiratory diseases including chronic obstructive pulmonary disease (COPD). However, the cellular mechanisms driving collagen remodeling and the functional implications of this process in the pathophysiology of pulmonary diseases remain poorly understood.

Methods: To address this question, we employed ; mice with specific depletion of Lyve-1 macrophages and assessed the content, types and organization of collagen in lung compartments at steady state and after chronic exposure to cigarette smoke (CS).

View Article and Find Full Text PDF

Discovery of novel capsaicin analogs as TRPV1 inhibitors for the treatment of idiopathic pulmonary fibrosis.

Eur J Med Chem

February 2025

Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China. Electronic address:

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease for which few drugs are available in clinical practice. Here, we identified novel capsaicin analogs by combining in-house chemical library screening and further structural optimization. (E)-1-(3,4-dihydroxyphenyl)-7-phenylhept-1-en-3-one (Compound 14) was found to be the most potent in inhibiting TGF-β-induced collagen accumulation, proliferation and migration in fibroblast cells.

View Article and Find Full Text PDF

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

1,8-Cineole reduces pulmonary vascular remodelling in pulmonary arterial hypertension by restoring intercellular communication and inhibiting angiogenesis.

Phytomedicine

December 2024

Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, Coimbra 3000-548, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.

Background: Pulmonary Arterial Hypertension (PAH) is characterized by pulmonary vascular remodelling, often associated with disruption of BMPR2/Smad1/5 and BMPR2/PPAR-γ signalling pathways that ultimately lead to right ventricle failure. Disruption of intercellular junctions and communication and a pro-angiogenic environment are also characteristic features of PAH. Although, current therapies improve pulmonary vascular tone, they fail to tackle other key pathological features that could prevent disease progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!