Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives/hypothesis: Recent investigations into the behavior of aerosolized emissions from the oral cavity have shown that particulate emissions do indeed occur during speech. To date, there is little information about the relative contribution of different speech sounds in producing particle emissions in a free field. This study compares airborne aerosol generation in participants producing isolated speech sounds: fricative consonants, plosive consonants, and vowel sounds.
Study Design: Prospective, reversal experimental design, where each participant served as their own control and all participants were exposed to all stimuli.
Methods: While participants produced isolated speech tasks, a planar beam of laser light, a high-speed camera, and image software calculated the number of particulates detected over time. This study compared airborne aerosols emitted by human participants at a distance of 2.54 cm between the laser sheet and the mouth.
Results: Statistically significant increases in particulate count over ambient dust distribution for all speech sounds. When collapsed across loudness levels, emitted particles in vowel sounds were statistically greater than consonants, suggesting that mouth opening, as opposed to the place of vocal tract constriction or manner of sound production, might also be influential in the degree to which particulates become aerosolized during speech.
Conclusions: The results of this research will inform boundary conditions for computational models of aerosolized particulates during speech.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jvoice.2023.05.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!