Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Parkinson's disease (PD) is one of the leading neurological disorders negatively impacting health on a global scale. Patients diagnosed with PD require frequent monitoring, prescribed medications, and therapy for extended periods as symptom severity worsens. The primary pharmaceutical treatment for PD patients is levodopa (L-Dopa) which reduces many symptoms experienced by PD patients (e.g., tremors, cognitive ability, motor dysfunction, etc.) through the regulation of dopamine levels in the body. Herein, the first detection of L-Dopa in human sweat using a low-cost 3D printed sensor with a simple and rapid fabrication protocol combined with a portable potentiostat wirelessly connected to a smartphone via Bluetooth is reported. By combining saponification and electrochemical activation into a single protocol, the optimized 3D printed carbon electrodes were able to simultaneously detect uric acid and L-Dopa throughout their biologically relevant ranges. The optimized sensors provided a sensitivity of 83 ± 3 nA/μM from 24 μM to 300 nM L-Dopa. Common physiological interferents found in sweat (e.g., ascorbic acid, glucose, caffeine) showed no influence on the response for L-Dopa. Lastly, a percent recovery of L-Dopa in human sweat using a smartphone-assisted handheld potentiostat resulted in the recovery of 100 ± 8%, confirming the ability of this sensor to accurately detect L-Dopa in sweat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.341546 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!