A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A comparative evaluation of low-field and high-field NMR untargeted analysis: Authentication of virgin coconut oil adulterated with refined coconut oil as a case study. | LitMetric

A comparative evaluation of low-field and high-field NMR untargeted analysis: Authentication of virgin coconut oil adulterated with refined coconut oil as a case study.

Anal Chim Acta

Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA; Foods for Health Discovery Theme, The Ohio State University, Columbus, OH, 43210, USA. Electronic address:

Published: September 2023

Despite the advances in low-field nuclear magnetic resonance (NMR), there are limited spectroscopic applications for untargeted analysis and metabolomics. To evaluate its potential, we combined high-field and low-field NMR with chemometrics for the differentiation between virgin and refined coconut oil and for the detection of adulteration in blended samples. Although low-field NMR has less spectral resolution and sensitivity compared to high-field NMR, it was still able to achieve a differentiation between virgin and refined coconut oils, as well as between virgin coconut oil and blends, using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and random forest techniques. These techniques were not able to distinguish between blends with different levels of adulteration; however, partial least squares regression (PLSR) enabled the quantification of adulteration levels for both NMR approaches. Given the significant benefits of low-field NMR, including economic and user-friendly analysis and fitting in an industrial environment, this study establishes the proof of concept for its utilization in the challenging scenario of coconut oil authentication. Also, this method has the potential to be used for other similar applications that involve untargeted analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.341537DOI Listing

Publication Analysis

Top Keywords

coconut oil
20
untargeted analysis
12
refined coconut
12
low-field nmr
12
high-field nmr
8
virgin coconut
8
differentiation virgin
8
virgin refined
8
partial squares
8
nmr
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!