Plasma phosphorylated-tau threonine 181 (p-tau181) is a promising biomarker for predicting Alzheimer's disease (AD) and mild cognitive impairment (MCI), which is the symptomatic pre-dementia stage of AD. To date, there are limitations in the current diagnosis and classification of the two stages of MCI and AD in clinical practice remain a dilemma. In this study, we aimed to discriminate and diagnose patients with MCI, AD, and healthy participants based on the accurate, label-free, and ultrasensitive detection of p-tau181 levels in human clinical plasma samples using our developed electrochemical impedance-based biosensor, which allows to detect p-tau181 at a very low concentration of 0.92 fg mL. Human plasma samples were collected from 20 patients with AD, 20 patients with MCI, and 20 individuals with healthy control. The change in charge-transfer resistance of the developed impedance-based biosensor caused by capturing p-tau181 in plasma samples was recorded to evaluate the determination of plasma p-tau181 levels in human clinical samples for discrimination and diagnosis of AD, MCI, and healthy control individuals, respectively. Receiver operating characteristic (ROC) curve, a standard analysis to judge the clinically diagnostic capability of our biosensor platform based on the estimated levels of plasma p-tau181, resulted a sensitivity of 95%, a specificity of 85%, the area under the ROC curve (AUC) value of 0.94 of the accuracy for discriminating AD patients from healthy controls; a sensitivity of 70%, a specificity of 70%, the AUC of 0.75 to discriminate MCI patients from healthy controls. Statistical analysis (one-way analysis of variance (ANOVA)) was used to compare the estimated plasma p-tau181 levels in clinical samples, indicated significantly higher for AD patients with healthy controls (***p ≤ 0.001), AD with MCI patients (***p ≤ 0.001), and MCI patients with healthy controls (*p ≤ 0.05), respectively. In addition, we compared our sensor to the global cognitive function scales and discovered that it performed noticeably improvement in diagnosing the stages of AD. These results demonstrated the good application of our developed electrochemical impedance-based biosensor in the identification of clinical disease stages. Moreover, in this study, a small dissociation constant (K) of 0.533 pM was first determined to evaluate the high binding affinity between the p-tau181 biomarker and its antibody, providing a reference parameter for future studies of the p-tau181 biomarker and AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.341535 | DOI Listing |
Sensors (Basel)
January 2025
Department of Computer Science, Faculty of Sciences and Humanities Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia.
Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon Nanowire Field-Effect Transistor (SiNW-FET) biosensor with a high-gain amplification circuit and a 1D Convolutional Neural Network (CNN) implemented on FPGA hardware. This attempt combines SiNW-FET biosensing technology with FPGA-implemented deep learning noise reduction, creating a compact system capable of real-time viral detection with minimal computational latency.
View Article and Find Full Text PDFBiosensors (Basel)
September 2024
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, USA.
Nanowell-based impedance-based label-free biosensors have demonstrated significant advantages in sensitivity, simplicity, and accuracy for detecting cancer biomarkers and macromolecules compared to conventional impedance-based biosensors. Although nanowell arrays have previously been employed for biomarker detection, a notable limitation exists in the photolithography step of their fabrication process, leading to a reduced efficiency rate. Historically, the diameter of these nanowells has been 2 μm.
View Article and Find Full Text PDFBiosensors (Basel)
August 2024
Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Faculty of Engineering Sciences, Ilse Katz Institute for Nanoscale Science and Technology, Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, Building 64, Rm 204, Beer Sheva 8410501, Israel.
Microfluidics have revolutionized cell culture by allowing for precise physical and chemical environmental control. Coupled with electrodes, microfluidic cell culture can be activated or have its changes sensed in real-time. We used our previously developed reliable and stable microfluidic device for cell growth and monitoring to design, fabricate, and characterize a whole-channel impedance-based sensor and used it to systematically assess the electrical and electrochemical influences of microfluidic channel boundaries coupled with varying electrode sizes, distances, coatings, and cell coverage.
View Article and Find Full Text PDFBiosens Bioelectron
August 2024
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA. Electronic address:
The production of HbS - an abnormal hemoglobin (Hb) - in sickle cell disease (SCD) results in poorly deformable red blood cells (RBCs) that are prone to microcapillary occlusion, causing tissue ischemia and organ damage. Novel treatments, including gene therapy, may reduce SCD morbidity, but methods to functionally evaluate RBCs remain limited. Previously, we presented the microfluidic impedance red cell assay (MIRCA) for rapid assessment of RBC deformability, employing electrical impedance-based readout to measure RBC occlusion of progressively narrowing micropillar openings.
View Article and Find Full Text PDFBiosensors (Basel)
April 2024
Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA.
With the increasing incidence of diverse global bacterial outbreaks, it is important to build an immutable decentralized database that can capture regional changes in bacterial resistance with time. Herein, we investigate the use of a rapid 3D printed µbiochamber with a laser-ablated interdigitated electrode developed for biofilm analysis of , and using electrochemical biological impedance spectroscopy (EBIS) across a 48 h spectrum, along with novel ladder-based minimum inhibitory concentration (MIC) stencil tests against oxytetracycline, kanamycin, penicillin G and streptomycin. Furthermore, in this investigation, a search query database has been built demonstrating the deterministic nature of the bacterial strains with real and imaginary impedance, phase, and capacitance, showing increased bacterial specification selectivity in the 9772.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!