Probe-labeled electrochemical approach for highly selective detection of 5-carboxycytosine in DNA.

Anal Chim Acta

School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China. Electronic address:

Published: September 2023

5-carboxycytosine (5caC) plays a critical role as an intermediate form in DNA methylation and demethylation processes. Its distribution and quantity significantly influence the dynamic equilibrium of these processes, thereby impacting the normal physiological activities of organisms. However, the analysis of 5caC presents a significant challenge due to its low abundance in the genome, making it almost undetectable in most tissues. In response to this challenge, we propose a selective method for 5caC detection using differential pulse voltammetry (DPV) at glassy carbon electrode (GCE), hinging on probe labeling. The probe molecule Biotin LC-Hydrazide was introduced into the target base and the labeled DNA was immobilized onto the electrode surface with the help of T4 polynucleotide kinase (T4 PNK). Leveraging the precise and efficient recognition of streptavidin and biotin, streptavidin-horseradish peroxidase (SA-HRP) on the surface of the electrode catalyzed a redox reaction involving hydroquinone and hydrogen peroxide, resulting in an amplified current signal. This procedure allowed us to quantitatively detect 5caC based on variations in current signals. This method demonstrated good linearity ranging from 0.01 to 100 nM with a detection limit as low as 7.9 pM. We have successfully applied it to evaluate the 5caC levels in complex biological samples. The probe labeling contributes to a high selectivity for 5caC detection, while the sulfhydryl modification via T4 PNK efficiently circumvents the limitation of specific sequences. Encouragingly, no reports have been made about electrochemical methods for detecting 5caC in DNA, suggesting that our method offers a promising alternative for 5caC detection in clinical samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.341521DOI Listing

Publication Analysis

Top Keywords

5cac detection
12
5cac
8
probe labeling
8
detection
5
probe-labeled electrochemical
4
electrochemical approach
4
approach highly
4
highly selective
4
selective detection
4
detection 5-carboxycytosine
4

Similar Publications

The chemical modifications of DNA are of pivotal importance in the epigenetic regulation of cellular processes. Although the function of 5-methylcytosine (5mC) has been extensively investigated, the significance of 5-hydroxymethylcytosine (5hmC) has only recently been acknowledged. Conventional methods for the detection of DNA methylation frequently lack the capacity to distinguish between 5mC and 5hmC, resulting in the combined reporting of both.

View Article and Find Full Text PDF

Development of a rapid mass spectrometric method for the analysis of ten-eleven translocation enzymes.

Methods Enzymol

September 2024

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States. Electronic address:

In DNA, methylation at the fifth position of cytosine (5mC) by DNA methyltransferases is essential for eukaryotic gene regulation. Methylation patterns are dynamically controlled by epigenetic machinery. Erasure of 5mC by Fe and 2-ketoglutarate (2KG) dependent dioxygenases in the ten-eleven translocation family (TET1-3), plays a key role in nuclear processes.

View Article and Find Full Text PDF

Cryopreservation of the whole testes of Asian sea bass (Lates calcarifer) and its effects on apoptosis, germ cell-specific gene expression, germ cell transplantability, and DNA methylation.

Theriogenology

November 2024

School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand. Electronic address:

Cryopreservation of spermatogonia could be a useful tool to preserve the genetic resources of fish, which could be further restored via germ cell transplantation. In this study, the protocol for the cryopreservation of the spermatogonia of Asian sea bass (Lates calcarifer), an economically important fishery resource in the Indo-West Pacific, was optimised. The impact of the cryopreservation technique on cell viability and apoptosis, expression of several genes related to immature germ cell markers, transplantability in allogeneic recipients, and global DNA methylation was evaluated.

View Article and Find Full Text PDF

The discovery of 5-hydroxymethylcytosine (5hmC) as a common DNA modification in mammalian genomes has ushered in new areas of inquiry regarding the dynamic epigenome. The balance between 5hmC and its precursor, 5-methylcytosine (5mC), has emerged as a determinant of key processes including cell fate specification, and alterations involving these bases have been implicated in the pathogenesis of various diseases. The identification of 5hmC separately from 5mC initially posed a challenge given that legacy epigenetic sequencing technologies could not discriminate between these two most abundant modifications, a significant blind spot considering their potentially functionally opposing roles.

View Article and Find Full Text PDF

A disposable electrochemical magnetic immunosensor for the rapid and sensitive detection of 5-formylcytosine and 5-carboxylcytosine in DNA.

Biosens Bioelectron

October 2024

School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China. Electronic address:

5-formylcytosine (5 fC) and 5-carboxylcytosine (5caC) serve as key intermediates in DNA demethylation process with significant implications for gene regulation and disease progression. In this study, we introduce a novel electrochemical sensing platform specifically designed for the sensitive and selective detection of 5 fC and 5caC in DNA. Protein A-modified magnetic beads (ProtA-MBs) coupled with specific antibodies facilitate the immunorecognition and enrichment of these modified bases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!