The variability of the phenolic content of thirteen populations of Zostera marina L. (six narrow-leaved and seven wide-leaved ecotypes) from different geographical zones, i.e., Baltic Sea, Mediterranean, East and West Atlantic, and East Pacific coasts was evaluated. Depending on the location, three to five phenolic acids and nine to fourteen flavonoids were identified of which an undescribed flavonoid sulfate. The phenolic concentrations of the thirteen populations differ among countries and among sites within countries. However, the same individuals were found almost everywhere. Substantial phenolic concentrations were found at all study sites with the exception of Puck Bay (Baltic Sea). Some geographical differences in the flavonoid content were observed. The highest phenolic diversity was found with specimens from the French Atlantic coast and the lowest with the Northeastern American sample (Cape Cod, MA). Regardless of their leaf width, the content of phenolic compounds was found to be similar and mainly characterized by rosmarinic acid and luteolin 7,3'-disulfate. The results demonstrate that geographic origin influences the phenolic composition of Z. marina primarily in terms of concentration, but not in terms of individual compound identity, despite the large geographic scale and the contrasting climatic and environmental conditions associated with it. This work is the first study to consider the spatial variability of phenolic compounds for a seagrass species on a spatial scale covering four bioregions. This is also the first to compare the phenolic chemistry of the two ecotypes of Z. marina.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2023.113788DOI Listing

Publication Analysis

Top Keywords

phenolic
10
phenolic chemistry
8
zostera marina
8
spatial scale
8
variability phenolic
8
thirteen populations
8
baltic sea
8
phenolic concentrations
8
phenolic compounds
8
chemistry seagrass
4

Similar Publications

High Resolution-Magic Angle Spinning (HR-MAS) solid-state NMR spectroscopy is finding increasing application in the analysis of solid foods, bypassing the need for complicated solvent extraction procedures. In the present protocol, we report a simple analytical approach based on HR-MAS NMR spectroscopy for the phenolic profiling of olive fruits, flesh, or skin. This approach allows the facile characterization of phenolic compounds in olive fruits cultivated for extra-virgin olive oil production as a function of maturation and variety, in addition to processing technology for table olives.

View Article and Find Full Text PDF

Analysis of Urinary Metanephrines Using Liquid Chromatography Tandem Mass Spectrometry.

Methods Mol Biol

January 2025

Analytic Biochemistry, Calculi and Manual Chemistry, Mass Spectrometry, ARUP Laboratories, Inc., Salt Lake City, UT, USA.

Metanephrines (metanephrine [MN] and normetanephrine [NMN]) are O-methylated metabolites derived from the catecholamines, epinephrine, and norepinephrine, respectively. High concentrations of metanephrines have been observed in individuals with pheochromocytoma, a neuroendocrine tumor. Measurement of metanephrines in urine is used to screen for the tumor.

View Article and Find Full Text PDF

Alzheimer's disease is a complex neurodegenerative disease characterized by progressive decline in cognitive function and behaviour. Ginger is the rhizome of the plant Zingiber officinale Roscoe, has been an important ingredient of many Ayurveda formulations to treat neurological disorders. The present study aims to estimate the variation of 6-gingerol content in nine different ginger samples collected from Manipur, India, investigate the neuroprotective potential of the most potent ginger sample against scopolamine-induced cognitively impaired mice, and validate the therapeutic claim by molecular docking analysis.

View Article and Find Full Text PDF

Essential oil and phenolic compounds in different organs and developmental stages of Monarda didyma L., and their biological activity.

Planta

January 2025

Department of Vegetable and Medicinal Plants, Institute of Horticulture Sciences, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02-776, Warsaw, Poland.

Plant development has a greater impact on the chemical composition of inflorescences than of the leaves and stems of Monarda didyma plants. Monarda didyma L. is a well-known ornamental and aromatic plant.

View Article and Find Full Text PDF

Heavy metal pollution, especially arsenic toxicity, significantly impairs plant growth and development. Phenolic acids, known for their antioxidant properties and involvement in stress signaling, are gaining increased attention as plant secondary metabolites with the potential to enhance plant resistance to these stressors. This study aimed to investigate the effects of different concentrations of syringic acid (SA1, 10 μM; SA2, 250 μM; SA3, 500 μM) on growth, photosynthetic parameters, and antioxidant activity in lettuce seedlings subjected to arsenic stress (As, 100 μM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!