Neuroinflammation plays an important part in secondary traumatic brain injury (TBI). Bromodomain-4 (BRD4) exerts specific proinflammatory effects in various neuropathological conditions. However, the underlying mechanism of action of BRD4 after TBI is not known. We measured BRD4 expression after TBI and investigated its possible mechanism of action. We established a model of craniocerebral injury in rats. After different intervention measures, we used western blotting, immunofluorescence, real-time reverse transcription-quantitative polymerase chain reaction, neuronal apoptosis, and behavioral tests to evaluate the effect of BRD4 on brain injury. At 72 h after brain injury, BRD4 overexpression aggravated the neuroinflammatory response, neuronal apoptosis, neurological dysfunction, and blood-brain-barrier damage, whereas upregulating expression of HMGB-1 and NF-κB had the opposite effect. Glycyrrhizic acid could reverse the proinflammatory effect of BRD4 overexpression upon TBI. Our results suggest that: (i) BRD4 may have a proinflammatory role in secondary brain injury through the HMGB-1/NF-κB signaling pathway; (ii) inhibition of BRD4 expression may play a part in secondary brain injury. BRD4 could be targeted therapy strategy for brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2023.137385DOI Listing

Publication Analysis

Top Keywords

brain injury
28
brd4 expression
12
brd4
9
inhibition brd4
8
hmgb-1/nf-κb signaling
8
signaling pathway
8
traumatic brain
8
injury
8
injury rats
8
mechanism action
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!