The probiotic potential of a designed bacterial consortia isolated from a competitive exclusion culture originally obtained from the intestinal contents of tilapia juveniles were evaluated on Nile tilapia alevins. The growth performance, intestinal histology, microbiota effects, resistance to Streptococcus agalactiae challenge, and immune response were assessed. In addition, the following treatments were included in a commercial feed: A12+M4+M10 (Lactococcus lactis A12, Priestia megaterium M4, and Priestia sp. M10), M4+M10 (P. megaterium M4, and Priestia sp. M10) and the single bacteria as controls; A12 (L. lactis A12), M4 (P. megaterium M4), M10 (Priestia sp. M10), also a commercial feed without any probiotic addition was included as a control. The results showed that all probiotic treatments improved the growth performance, intestinal histology, and resistance during experimental infection with S. agalactiae in comparison to the control fish. Also, the administration of probiotics resulted in the modulation of genes associated with the innate and adaptive immune systems that were non-dependent on microbial colonization. Surprisingly, L. lactis A12 alone induced benefits in fish compared to the microbial consortia, showing the highest increase in growth rate, survival during experimental infection with S. agalactiae, increased intestinal fold length, and the number of differentially expressed genes. Lastly, we conclude that a competitive exclusion culture is a reliable source of probiotics, and monostrain L. lactis A12 has comparable or even greater probiotic potential than the bacterial consortia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2023.108928DOI Listing

Publication Analysis

Top Keywords

lactis a12
16
growth performance
12
priestia m10
12
nile tilapia
8
probiotic potential
8
bacterial consortia
8
competitive exclusion
8
exclusion culture
8
performance intestinal
8
intestinal histology
8

Similar Publications

Design of an agro-industrial by-products-based media for the production of probiotic bacteria for fish nutrition.

Sci Rep

August 2024

Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chia, Cundinamarca, Colombia.

Probiotic production in commercial culture media is expensive, so, it is necessary to design culture media based on "low-cost" components like agro-industrial by-products. Therefore, this study aimed to design an agro-industrial by-product-based culture media using whey, sugarcane molasses, and palm kernel cake as components to produce Lactococcus lactis A12, Priestia megaterium M4, and Priestia sp. M10 isolated from Nile tilapia (Oreochromis niloticus) associated gut microbiota.

View Article and Find Full Text PDF

Objectives: The aim of this study was to evaluate the effect of in-vivo produced Nisin which is an antimicrobial peptide (AMP) added to adhesive resin on shear bond strength (SBS) and the adhesive remnant index (ARI) of orthodontic brackets.

Methods: Bacterial AMP was produced by fermentation and the ideal AMP/Bond concentration and antimicrobial efficacy of the mixture were tested. To evaluate the SBS and ARI scores of AMP-added adhesive resins, 80 maxillary premolar teeth extracted for orthodontic purposes were used and randomly assigned into 2 groups (n = 40).

View Article and Find Full Text PDF

Probiotics face harsh conditions during their transit through the gastrointestinal tract (GIT) of fish because of low-pH environments and intestine fluid. Therefore, the evaluation of probiotic viability under simulated gastrointestinal conditions is an important step to consider for probiotic supplementation in fish feed prior to in vivo trials. Therefore, this study aimed to evaluate the effect of stomach and intestinal simulated conditions on the viability of encapsulated A12 using an in vitro digestion model for tilapia.

View Article and Find Full Text PDF

Production of a potential multistrain probiotic in co-culture conditions using agro-industrial by-products-based medium for fish nutrition.

BMC Biotechnol

December 2023

Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana. Campus del Puente del Común, Autopista Norte de Bogotá. Chía, Km. 7, Cundinamarca, Colombia.

Background: Probiotics are viable microorganisms that when administered in adequate amounts confer health benefits to the host. In fish, probiotic administration has improved growth, and immunological parameters. For this reason, it is necessary production of probiotic bacteria, however, commercial culture mediums used for probiotic growth are expensive, so the design of a "low" cost culture medium is necessary.

View Article and Find Full Text PDF

The probiotic potential of a designed bacterial consortia isolated from a competitive exclusion culture originally obtained from the intestinal contents of tilapia juveniles were evaluated on Nile tilapia alevins. The growth performance, intestinal histology, microbiota effects, resistance to Streptococcus agalactiae challenge, and immune response were assessed. In addition, the following treatments were included in a commercial feed: A12+M4+M10 (Lactococcus lactis A12, Priestia megaterium M4, and Priestia sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!