Simulation theories propose that vicarious touch arises when seeing someone else being touched triggers corresponding representations of being touched. Prior electroencephalography (EEG) findings show that seeing touch modulates both early and late somatosensory responses (measured with or without direct tactile stimulation). Functional Magnetic Resonance Imaging (fMRI) studies have shown that seeing touch increases somatosensory cortical activation. These findings have been taken to suggest that when we see someone being touched, we simulate that touch in our sensory systems. The somatosensory overlap when seeing and feeling touch differs between individuals, potentially underpinning variation in vicarious touch experiences. Increases in amplitude (EEG) or cerebral blood flow response (fMRI), however, are limited in that they cannot test for the information contained in the neural signal: seeing touch may not activate the same information as feeling touch. Here, we use time-resolved multivariate pattern analysis on whole-brain EEG data from people with and without vicarious touch experiences to test whether seen touch evokes overlapping neural representations with the first-hand experience of touch. Participants felt touch to the fingers (tactile trials) or watched carefully matched videos of touch to another person's fingers (visual trials). In both groups, EEG was sufficiently sensitive to allow decoding of touch location (little finger vs. thumb) on tactile trials. However, only in individuals who reported feeling touch when watching videos of touch could a classifier trained on tactile trials distinguish touch location on visual trials. This demonstrates that, for people who experience vicarious touch, there is overlap in the information about touch location held in the neural patterns when seeing and feeling touch. The timecourse of this overlap implies that seeing touch evokes similar representations to later stages of tactile processing. Therefore, while simulation may underlie vicarious tactile sensations, our findings suggest this involves an abstracted representation of directly felt touch.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2023.120269 | DOI Listing |
Methods Cell Biol
January 2025
State University of Minas Gerais, Department of Biomedical Sciences and Health, Passos, MG, Brazil. Electronic address:
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, PR China; Faculty of Architecture, The University of Hong Kong, Hong Kong, PR China. Electronic address:
Infectious microbes can spread rapidly from fomites (contaminated surfaces) via hand touch, with prolonged residence time on surfaces increasing transmission risk by extending exposure periods and/or involving more susceptible individuals. Existing studies have focused on decreasing microbial contamination, but not on the need for rapid removal from surface systems. This study introduces residence time as the time that a microbe spends within the surface system.
View Article and Find Full Text PDFAm J Health Syst Pharm
January 2025
Veterans Health Care System of the Ozarks, Fayetteville, AR, USA.
Disclaimer: In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Laboratory for the Study of Tactile Communication, Pushkin State Russian Language Institute, 117485 Moscow, Russia.
Background: The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the aftereffects of touch.
Methods: A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute calf and foot massage prior to undergoing resting-state fMRI.
J Clin Med
January 2025
Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater University of Bologna, 40138 Bologna, Italy.
Manual therapies like Osteopathic Manipulative Treatment (OMT) and Gentle Touch Intervention (GTI) are widely employed for improving posture and spinal alignment, but their effects as measured using advanced technologies remain underexplored. This study aims to evaluate the short-term postural effects of these interventions using a non-invasive three-dimensional rasterstereography-based approach, focusing on the cervical arrow, lumbar arrow, kyphotic angle, and lordotic angle parameters. A three-armed randomized controlled trial was conducted with 165 healthy participants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!