A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role of biochar-derived DOM compositions in enhanced biodegradation of sulfamethoxazole and chloramphenicol. | LitMetric

Role of biochar-derived DOM compositions in enhanced biodegradation of sulfamethoxazole and chloramphenicol.

J Hazard Mater

Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China.

Published: September 2023

In the study, we investigated the different compositions of biochar-derived dissolved organic matter (BDOM) that play a key role in the biodegradation of sulfamethoxazole (SMX) and chloramphenicol (CAP) by P. stutzeri and S. putrefaciens, and found that aliphatic compounds in Group 4, fulvic acid like in Region III, and solid microbial byproduct like in region IV are key common factors. The growth and antibiotic degradation efficiency of P. stutzeri and S. putrefaciens are positively correlated with the content of Group 4 and Region III, and negatively correlated with Region IV. This is consistent with the optimal biodegradation results of BDOM700 with the highest content of Group 4 and Region III. Additionally, the degradation efficiency of SMX by Pseudomonas stutzeri is negatively correlated with the percentage of polycyclic aromatics in Group 1, but not with CAP. Similarly, the percentage of fatty acids in S. putrefaciens was positively correlated with Group 1, whereas P. stutzeri did not. This indicates that some components of BDOM have varying effects on different bacteria or types of antibiotics. This study provides new insights into enhancing antibiotic biodegradation by controlling the composition of BDOM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131979DOI Listing

Publication Analysis

Top Keywords

region iii
12
biodegradation sulfamethoxazole
8
stutzeri putrefaciens
8
degradation efficiency
8
putrefaciens positively
8
positively correlated
8
content group
8
group region
8
negatively correlated
8
group
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!