Novel rapid detection of melamine based on the synergistic aggregation of gold nanoparticles.

Food Chem

State Key Laboratory of Food Science and Resources, Nanchang University 235, East Nanjing Road, Nanchang 330047, China. Electronic address:

Published: December 2023

A simple and rapid colorimetric method for the detection of melamine in milk samples is described. Polythymidine oligonucleotide was adsorbed on to the surface of gold nanoparticles (AuNPs), protecting it from aggregation. In the presence of melamine, polythymidine oligonucleotide combined with melamine formed a double-strand DNA-like structure, allowing AuNPs aggregation. In the presence of positively charged SYBR Green I (SG I), AuNPs were further aggregated. In the presence of melamine and SG I, aggregation of AuNPs was synergistic. Thus, in this principle, melamine can be detected visually. Plasmon resonance peak changes enabled detection of melamine quantitatively using UV-vis spectroscopy. The limit of detection for this colorimetric method was 16 μg L with a good linear range from 19.5 μg L to 1.25 × 10 μg L, and detection took only 1 min. The method was successfully applied for detection of melamine in milk samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.136789DOI Listing

Publication Analysis

Top Keywords

detection melamine
16
melamine
8
gold nanoparticles
8
colorimetric method
8
melamine milk
8
milk samples
8
polythymidine oligonucleotide
8
aggregation presence
8
presence melamine
8
detection
6

Similar Publications

Foamy Melamine Resin-Silica Aerogel Composite-Derived Thermal Insulation Coating.

Nanomaterials (Basel)

January 2025

State Key Laboratory of High-Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 210008, China.

A novel class of SiO aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by utilizing SiO aerogel particles not only as a thermal insulative functional additive filler but also as nano-sized solid particles in a Picking emulsion system, adjusting the surface tension as a stabilizer at the interface between the two immiscible phases (liquid and air in this case). The results of foamy structure analyses via scanning electron microscopy, micro-CT, and N adsorption-desorption isotherms validate the successful generation of a micro-scale porous structure with the enhancement of the aerogel nano-scale solid particles at the wall as a stabilizer.

View Article and Find Full Text PDF

Nitrogen-doped carbon quantum dots from pumpkin for the sensing of nifuratel and temperature.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619 PR China.

Herein, nitrogen doped carbon quantum dots (N-CQDs) were synthesized using a hydrothermal strategy. The raw materials for the preparation of N-CQDs were sourced from pumpkin and melamine. The N-CQDs suggested fascinating water solubility, favorable UV and salt resistance stability.

View Article and Find Full Text PDF

Bionic Luminescent Sensors Based on Covalent Organic Frameworks: Auditory, Gustatory, and Olfactory Information Monitoring for Multimode Perception.

ACS Nano

January 2025

Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.

The synthesis of covalent organic frameworks (COFs) with excellent luminescent properties and their effective application in the field of bionic sensing remain a formidable challenge. Herein, a series of COFs with different numbers of hydroxyl groups are successfully synthesized, and the number of hydroxyl groups on the benzene-1,3,5-tricarbaldehyde (BTA) linker influences the properties of the final COFs. The COF (HHBTA-OH) prepared with hydrazine hydrate (HH) and BTA containing one hydroxyl group as the ligands exhibits the best fluorescent performance.

View Article and Find Full Text PDF

Nitrogen@Carbon quantum dots (N@CQDs) are prepared using microwave hydrothermal method, and polyvinylpyrrolidone (PVP) and melamine are used as mixed C source and N source. Microwave reaction conditions of preparing the N@CQDs are 170 ℃ and 3 h. This N@CQDs are are used as fluorescence probe for detection of amino acids.

View Article and Find Full Text PDF

Growing concerns about the health risks of melamine adulteration in food products highlight the urgent need for reliable detection methods. However, the long-term effects of chronic low-level melamine exposure remain inadequately explored. This study introduces THE ONE InstantCare platform, a portable immunoassay analyzer integrating a SpectroChip-based spectral processing unit (SPU) with lateral flow immunoassay (LFIA) for sensitive and accurate quantification of melamine in human urine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!