Exonic mutations in cell-cell adhesion may contribute to CADASIL-related CSVD pathology.

Hum Genet

Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.

Published: September 2023

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a condition caused by mutations in NOTCH3 and results in a phenotype characterised by recurrent strokes, vascular dementia and migraines. Whilst a genetic basis for the disease is known, the molecular mechanisms underpinning the pathology of CADASIL are still yet to be determined. Studies conducted at the Genomics Research Centre (GRC) have also identified that only 15-23% of individuals clinically suspected of CADASIL have mutations in NOTCH3. Based on this, whole exome sequencing was used to identify novel genetic variants for CADASIL-like cerebral small-vessel disease (CSVD). Analysis of functionally important variants in 50 individuals was investigated using overrepresentation tests in Gene ontology software to identify biological processes that are potentially affected in this group of patients. Further investigation of the genes in these processes was completed using the TRAPD software to identify if there is an increased number (burden) of mutations that are associated with CADASIL-like pathology. Results from this study identified that cell-cell adhesion genes were positively overrepresented in the PANTHER GO-slim database. TRAPD burden testing identified n = 15 genes that had a higher number of rare (MAF < 0.001) and predicted functionally relevant (SIFT < 0.05, PolyPhen > 0.8) mutations compared to the gnomAD v2.1.1 exome control dataset. Furthermore, these results identified ARVCF, GPR17, PTPRS, and CELSR1 as novel candidate genes in CADASIL-related pathology. This study identified a novel process that may be playing a role in the vascular damage related to CADASIL-related CSVD and implicated n = 15 genes in playing a role in the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449969PMC
http://dx.doi.org/10.1007/s00439-023-02584-8DOI Listing

Publication Analysis

Top Keywords

cell-cell adhesion
8
mutations notch3
8
software identify
8
exonic mutations
4
mutations cell-cell
4
adhesion contribute
4
contribute cadasil-related
4
cadasil-related csvd
4
csvd pathology
4
pathology cerebral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!