In recent years, ultrahigh performance liquid chromatography Fourier transform mass spectrometry (LC/FT-MS) based non-targeted screening (NTS) methods have become increasingly popular for comprehensive analysis of complex organic mixtures. However, applying these methods for environmental complex mixture analysis is challenging due to the extreme complexity of natural samples and a lack of standard samples or surrogates for environmental complex mixtures. Furthermore, limited molecular markers in the databases and insufficient data processing software workflows make the application of these methods more challenging for environmental complex mixtures. In this work, we implement a new NTS data processing workflow to process data collected from ultrahigh performance liquid chromatography and Fourier transform Orbitrap Elite Mass Spectrometry (LC/FT-MS) by combining MZmine2 and MFAssignR, two opensource data processing tools and commercial Mesquite liquid smoke as a surrogate for biomass burning organic aerosol. MZmine2.53 data extraction followed MFAssignR molecular formula assignment offered noise free and highly accurate 1733 individual molecular formulas presented in liquid smoke with 4906 molecular species, including isomers. The results of this new approach were consistent with the results of direct infusion FT-MS analysis confirming its reliability. Over 90% of the molecular formulas presented in mesquite liquid smoke were matched with the molecular formulas of ambient biomass burning organic aerosol. This suggests the potential use of commercial liquid smoke is an acceptable surrogate for biomass burning organic aerosol research. The presented method significantly improves the identification of the molecular composition of biomass burning organic aerosol by successfully addressing some of the limitations related to the data analysis and giving a semi quantitative insight into the analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.139403DOI Listing

Publication Analysis

Top Keywords

biomass burning
20
burning organic
20
organic aerosol
20
liquid smoke
16
ultrahigh performance
12
environmental complex
12
data processing
12
molecular formulas
12
non-targeted screening
8
mzmine2 mfassignr
8

Similar Publications

Posttranslational modifications in cardiac metabolic remodeling mediated by metabolites: Implications for disease pathology and therapeutic potential.

Metabolism

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China. Electronic address:

The nonenergy-producing or biomass-accumulating functions of metabolism are attracting increasing attention, as metabolic changes are gaining importance as discrete signaling pathways in modulating enzyme activity and gene expression. Substantial evidence suggests that myocardial metabolic remodeling occurring during diabetic cardiomyopathy, heart failure, and cardiac pathological stress (e.g.

View Article and Find Full Text PDF

Characterising Carbon Monoxide Household Exposure and Health Impacts in High- and Middle-Income Countries-A Rapid Literature Review, 2010-2024.

Int J Environ Res Public Health

January 2025

Environmental Epidemiology Team, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency (UKHSA), Didcot OX11 0RQ, UK.

Carbon monoxide (CO) is a toxic gas, and faulty gas appliances or solid fuel burning with incomplete combustion are possible CO sources in households. Evaluating household CO exposure models and measurement studies is key to understanding where CO exposures may result in adverse health outcomes. This assists the assessment of the burden of disease in high- and middle-income countries and informs public health interventions in higher-risk environments.

View Article and Find Full Text PDF

Particulate matter (PM), particularly fine (PM) and ultrafine (PM) particles, originates from both natural and anthropogenic sources, such as biomass burning and vehicle emissions. These particles contain harmful compounds that pose significant health risks. Upon inhalation, ingestion, or dermal contact, PM can penetrate biological systems, inducing oxidative stress, inflammation, and DNA damage, which contribute to a range of health complications.

View Article and Find Full Text PDF

Evaluating the Laboratory Performance of Pellet-Fueled Semigasifier Cookstoves.

Environ Sci Technol

January 2025

Air Methods and Characterization Division, U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States.

This study examines three representative semigasifier cookstove models each burning four types of pelletized-biomass fuel (hardwood, peanut hull, rice husk, and wheat straw) using the International Organization for Standardization (ISO) 19867-1:2018 protocol. ISO tier ratings for fine particulate matter (PM) and carbon monoxide (CO) emissions ranged 1-4 and 2-5 (where 5 = cleanest), respectively, suggesting that pellet-fueled cookstoves may provide substantial emissions reductions, dependent upon stove/fuel matching and operation, over other biomass-fueled cooking alternatives. PM emission factors based on useful energy delivered (EF) varied by up to 25-fold, and organic and elemental carbon (OC and EC) EF values respectively varied by >200- and ∼100-fold, reflecting complex variability in PM composition.

View Article and Find Full Text PDF

Airborne quasi-ultrafine particle samples were collected from different outdoor sites in Barcelona (NE Spain, 35 samples) and the Valencia subway (about 400 km south of Barcelona, 3 samples). Locations and schedules were designed to cover cold and warm seasons and to represent the impact of different types of transport (cars, trains, ships, and planes). Extracts from PTFE filters (methanol:dichloromethane 1:2) were used to test toxic effects in human cell lines (Induction of reactive oxygen species, inflammatory response) and in zebrafish embryos (expression of xenobiotic response-related genes, cyp1a1, gsa1 and hao1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!