Leishmaniasis is a parasitic disease and categorised as a neglected tropical disease (NTD). Each year, between 70,0000 and 1 million new cases are believed to occur. There are approximately 90 sandfly species which can spread the Leishmania parasites (over 20 species) causing 20,000 to 30,000 death per year. Currently, leishmaniasis has no specific therapeutic treatment available. The prescribed drugs with several drawbacks including high cost, challenging administration, toxicity, and drug resistance led to search for the alternative treatment with less toxicity and selectivity. Introducing the molecular features like that of phytoconstituents for the search of compounds with less toxicity is another promising approach. The current review classifies the synthetic compounds according to the core rings present in the natural phytochemicals for the development of antileishmanial agents (2020-2022). Considering the toxicity and limitations of synthetic analogues, natural compounds are at the higher notch in terms of effectiveness and safety. Synthesized compounds of chalcones (Compound 8; IC: 0.03 μM, 4.7 folds more potent than Amphotericin B; IC: 0.14 μM), pyrimidine (compound 56; against L. tropica; 0.04 μM and L. infantum; 0.042 μM as compared to glucantime: L. tropica; 8.17 μM and L. infantum; 8.42 μM), quinazoline and (compound 72; 0.021 μM, 150 times more potent than miltefosine). The targeted delivery against DHFR have been demonstrated by one of the pyrimidine compounds 62 with an IC value of 0.10 μM against L. major as compared to the standard trimethoprim (IC: 20 μM). The review covers the medicinal importance of antileishmanial agents from synthetic and natural sources such as chalcone, pyrazole, coumarins, steroids, and alkaloidal-containing drugs (indole, quinolines, pyridine, pyrimidine, carbolines, pyrrole, aurones, and quinazolines). The efforts of introducing the core rings present in the natural phytoconstituents as antileishmanial in the synthetic compounds are discussed with their structural activity relationship. The perspective will support the medicinal chemists in refining and directing the development of novel molecules phytochemicals-based antileishmanial agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2023.115609 | DOI Listing |
Mikrobiyol Bul
January 2025
Manisa Celal Bayar Üniversitesi Tıp Fakültesi, Tıbbi Parazitoloji Anabilim Dalı, Manisa.
İnsanlığın karşı karşıya kaldığı en önemli halk sağlığı sorunlarından biri olan ilaç direnci, antilayşmanyal ajan geliştirmede yeni stratejileri ve yaklaşımları zorunlu kılmaktadır. Dışa atım pompa inhibitörleri (DAPİ) ve diğer aday ajanlar ile ilgili gelişmeler umut verici olmakla birlikte, mevcut antilayşmanyallerin kullanım sürelerini ve etkinliklerini artırabilme arayışları da devam etmektedir. Bu çalışmada rezerpin (REZ), berberin (BER) ve verapamil (VER) olmak üzere üç adet DAPİ'nin antilayşmanyallere etkisinin araştırılması amaçlanmıştır.
View Article and Find Full Text PDFDrug Dev Res
February 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia.
Leishmaniasis and trypanosomiasis are parasitic diseases that are closely linked to poverty, pose significant local burdens, and are common in tropical and subtropical regions. Various synthetic tetralone derivatives were studied as potential scaffolds for antileishmanial and antitrypanosomal activities. The compounds were studied for their effectiveness against multiple kinetoplastid protozoan pathogens: Leishmania major, Leishmania mexicana, and bloodstream trypomastigotes of Trypanosoma brucei brucei.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Infectious Diseases Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brazil. Electronic address:
Visceral leishmaniasis is a systemic disease that affects various internal organs and represents the most severe and fatal form of leishmaniasis. Conventional treatment presents significant challenges, such as prolonged management in hospital settings, high toxicity, and an increasing growing number of cases of resistance. In previous studies, our research group demonstrated the effective and selective activity of the 2-amino-thiophene derivative SB-83 in preclinical models of cutaneous leishmaniasis.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
Background/objectives: New drugs are required for the treatment of liver cancers and protozoal parasite infections. Analogs of the known anticancer active and antileishmanial 2',4',6'-trimethoxychalcone SU086 were prepared and investigated.
Methods: The chalcones were prepared according to the Claisen-Schmidt condensation protocol and analyzed.
Molecules
January 2025
Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil.
Leishmaniasis is a neglected tropical disease caused by a protozoan of the genus Leishmania, which has visceral and cutaneous forms. The symptoms of leishmaniasis include high fever and weakness, and the cutaneous infection also causes lesions under the skin. The drugs used to treat leishmaniasis have become less effective due to the resistance mechanisms of the protozoa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!