The role of natural anti-parasitic guided development of synthetic drugs for leishmaniasis.

Eur J Med Chem

Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India. Electronic address:

Published: October 2023

Leishmaniasis is a parasitic disease and categorised as a neglected tropical disease (NTD). Each year, between 70,0000 and 1 million new cases are believed to occur. There are approximately 90 sandfly species which can spread the Leishmania parasites (over 20 species) causing 20,000 to 30,000 death per year. Currently, leishmaniasis has no specific therapeutic treatment available. The prescribed drugs with several drawbacks including high cost, challenging administration, toxicity, and drug resistance led to search for the alternative treatment with less toxicity and selectivity. Introducing the molecular features like that of phytoconstituents for the search of compounds with less toxicity is another promising approach. The current review classifies the synthetic compounds according to the core rings present in the natural phytochemicals for the development of antileishmanial agents (2020-2022). Considering the toxicity and limitations of synthetic analogues, natural compounds are at the higher notch in terms of effectiveness and safety. Synthesized compounds of chalcones (Compound 8; IC: 0.03 μM, 4.7 folds more potent than Amphotericin B; IC: 0.14 μM), pyrimidine (compound 56; against L. tropica; 0.04 μM and L. infantum; 0.042 μM as compared to glucantime: L. tropica; 8.17 μM and L. infantum; 8.42 μM), quinazoline and (compound 72; 0.021 μM, 150 times more potent than miltefosine). The targeted delivery against DHFR have been demonstrated by one of the pyrimidine compounds 62 with an IC value of 0.10 μM against L. major as compared to the standard trimethoprim (IC: 20 μM). The review covers the medicinal importance of antileishmanial agents from synthetic and natural sources such as chalcone, pyrazole, coumarins, steroids, and alkaloidal-containing drugs (indole, quinolines, pyridine, pyrimidine, carbolines, pyrrole, aurones, and quinazolines). The efforts of introducing the core rings present in the natural phytoconstituents as antileishmanial in the synthetic compounds are discussed with their structural activity relationship. The perspective will support the medicinal chemists in refining and directing the development of novel molecules phytochemicals-based antileishmanial agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2023.115609DOI Listing

Publication Analysis

Top Keywords

antileishmanial agents
12
synthetic compounds
8
core rings
8
rings natural
8
compounds
6
synthetic
5
role natural
4
natural anti-parasitic
4
anti-parasitic guided
4
guided development
4

Similar Publications

İnsanlığın karşı karşıya kaldığı en önemli halk sağlığı sorunlarından biri olan ilaç direnci, antilayşmanyal ajan geliştirmede yeni stratejileri ve yaklaşımları zorunlu kılmaktadır. Dışa atım pompa inhibitörleri (DAPİ) ve diğer aday ajanlar ile ilgili gelişmeler umut verici olmakla birlikte, mevcut antilayşmanyallerin kullanım sürelerini ve etkinliklerini artırabilme arayışları da devam etmektedir. Bu çalışmada rezerpin (REZ), berberin (BER) ve verapamil (VER) olmak üzere üç adet DAPİ'nin antilayşmanyallere etkisinin araştırılması amaçlanmıştır.

View Article and Find Full Text PDF

Antileishmanial and Antitrypanosomal Trends of Synthetic Tetralone Derivatives.

Drug Dev Res

February 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia.

Leishmaniasis and trypanosomiasis are parasitic diseases that are closely linked to poverty, pose significant local burdens, and are common in tropical and subtropical regions. Various synthetic tetralone derivatives were studied as potential scaffolds for antileishmanial and antitrypanosomal activities. The compounds were studied for their effectiveness against multiple kinetoplastid protozoan pathogens: Leishmania major, Leishmania mexicana, and bloodstream trypomastigotes of Trypanosoma brucei brucei.

View Article and Find Full Text PDF

Visceral leishmaniasis is a systemic disease that affects various internal organs and represents the most severe and fatal form of leishmaniasis. Conventional treatment presents significant challenges, such as prolonged management in hospital settings, high toxicity, and an increasing growing number of cases of resistance. In previous studies, our research group demonstrated the effective and selective activity of the 2-amino-thiophene derivative SB-83 in preclinical models of cutaneous leishmaniasis.

View Article and Find Full Text PDF

Identification of a New Pentafluorosulfanyl-Substituted Chalcone with Activity Against Hepatoma and Human Parasites.

Pharmaceuticals (Basel)

January 2025

Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.

Background/objectives: New drugs are required for the treatment of liver cancers and protozoal parasite infections. Analogs of the known anticancer active and antileishmanial 2',4',6'-trimethoxychalcone SU086 were prepared and investigated.

Methods: The chalcones were prepared according to the Claisen-Schmidt condensation protocol and analyzed.

View Article and Find Full Text PDF

Leishmaniasis is a neglected tropical disease caused by a protozoan of the genus Leishmania, which has visceral and cutaneous forms. The symptoms of leishmaniasis include high fever and weakness, and the cutaneous infection also causes lesions under the skin. The drugs used to treat leishmaniasis have become less effective due to the resistance mechanisms of the protozoa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!