Electrochemical water splitting using hollow and defect-rich catalysts has emerged as a promising strategy for efficient hydrogen production. However, the rational design and controllable synthesis of such catalysts with intricate morphology and composition present significant challenges. Herein, we propose a template-engaged approach to fabricate a novel ball-in-ball hollow structure of Co-P-O@N-doped carbon with abundant oxygen vacancies. The synthesis process involves the preparation of uniform cobalt-glycerate (Co-gly) polymer microspheres as precursors, followed by surface coating with ZIF-67 layer, adjustable chemical etching by phytic acid, and controllable pyrolysis at high temperature. The resulting ball-in-ball structure offers a large number of accessible active sites and high redox reaction centers, facilitating efficient charge transport, mass transfer, and gas evolution, which are beneficial for the acceleration of electrocatalytic reaction. Additionally, density functional theory (DFT) calculations indicate that the incorporation of oxygen and the presence of Co-P dangling bonds in CoP significantly enhance the adsorption of oxygenated species, leading to improved intrinsic electroactivity at the single-site level. As a sequence, the titled catalyst exhibits remarkable electrocatalytic activity and stability for water splitting in alkaline media. Notably, it only requires a low overpotential of 283 mV to achieve a current density of 10 mA cm for the oxygen evolution reaction. This work may provide some new insights into the design of complex hollow structures of phosphides with abundant defects for energy conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.06.129 | DOI Listing |
Nat Commun
January 2025
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China.
Photocatalytic overall water splitting is a promising approach for a sustainable hydrogen provision using solar energy. For sufficient solar energy utilization, this reaction ought to be operated based on visible-light-active semiconductors, which is very challenging. In this work, an F-expedited nitridation strategy is applied to modify the wide-bandgap semiconductor SrTiO for visible-light-driven photocatalytic overall water splitting.
View Article and Find Full Text PDFNat Commun
January 2025
Max Planck Institute of Colloids and Interfaces, Colloid Chemistry Department, Am Mühlenberg 1, 14476, Potsdam, Germany.
Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India.
The urgent need to address escalating environmental pollution and energy management challenges has underscored the importance of developing efficient, cost-effective, and multifunctional electrocatalysts. To address these issues, we developed an eco-friendly, cost-effective, and multifunctional electrocatalyst a solvothermal synthesis approach. Due to the merits of the ideal synthesis procedure, the FeCoHS@NF electrocatalyst exhibited multifunctional activities, like OER, HER, OWS, UOR, OUS, and overall alkaline seawater splitting, with required potentials of 1.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
Electrochemical water splitting is a pivotal process for sustainable hydrogen energy production, relying on efficient hydrogen evolution reaction (HER) catalysts, particularly in acidic environments, where both high activity and durability are crucial. Despite the favorable kinetics of platinum (Pt)-based materials, their performance is hindered under harsh conditions, driving the search for alternatives. Due to their unique structural characteristic, Prussian blue analogs (PBAs) emerge as attractive candidates for designing efficient HER electrocatalysts.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.
Drought stress significantly impacts wheat productivity, but plant growth regulators may help mitigate these effects. This study examined the influence of gibberellic acid (GA3) and abscisic acid (ABA) on wheat (Triticum aestivum L., CV: Giza 171) growth and yield under different water regimes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!