Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mild cognitive impairment is a typical symptom of early Alzheimer's disease (AD). Glehnia littoralis (G. littoralis), a medicinal halophyte plant commonly used to treat strokes, has been shown to possess some therapeutic qualities. In this study, we investigated the neuroprotective and anti-neuroinflammatory effects of a 50% ethanol extract of G. littoralis (GLE) on lipopolysccharide (LPS)-stimulated BV-2 cells and scopolamine-induced amnesic mice. In the in vitro study, GLE treatment (100, 200, and 400 µg/mL) markedly attenuated the translocation of NF-κB to the nucleus concomitantly with the significant mitigation of the LPS-induced production of inflammatory mediators, including NO, iNOS, COX-2, IL-6, and TNF-α. In addition, the GLE treatment suppressed the phosphorylation of MAPK signaling in the LPS-stimulated BV-2 cells. In the in vivo study, mice were orally administered with the GLE (50, 100, and 200 mg/kg) for 14 days, and cognitive loss was induced via the intraperitoneal injection of scopolamine (1 mg/kg) from 8 to 14 days. We found that GLE treatment ameliorated memory impairment and simultaneously improved memory function in the scopolamine-induced amnesic mice. Correspondingly, GLE treatment significantly decreased the AChE level and upregulated the protein expression of neuroprotective markers, such as BDNF and CREB, as well as Nrf2/HO-1 and decreased the levels of iNOS and COX-2 in the hippocampus and cortex. Furthermore, GLE treatment attenuated the increased phosphorylation of NF-κB/MAPK signaling in the hippocampus and cortex. These results suggest that GLE has a potential neuroprotective activity that may ameliorate learning and memory impairment by regulating AChE activity, promoting CREB/BDNF signaling, and inhibiting NF-κB/MAPK signaling and neuroinflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2023.115106 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!