An electrochemical sensor derived from Cu-BTB MOF for the efficient detection of diflubenzuron in food and environmental samples.

Food Chem

Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China. Electronic address:

Published: December 2023

AI Article Synopsis

  • Diflubenzuron is a commonly used insecticide, and monitoring its residues in food and the environment is important for human health.
  • A new electrochemical sensor made from a core-shell structure of Cu/CuO/CuO@C was created to effectively detect diflubenzuron, showing a linear response over a specified concentration range.
  • The sensor proved to have high stability, reproducibility, and the ability to differentiate diflubenzuron in food and environmental samples, demonstrating successful application in practical scenarios.

Article Abstract

Diflubenzuron is widely used as a benzoylurea insecticide, and its impact on human health should not be underestimated. Therefore, the detection of its residues in food and the environment is crucial. In this paper, octahedral Cu-BTB was fabricated using a simple hydrothermal method. It served as a precursor for synthesizing Cu/CuO/CuO@C with a core-shell structure through annealing, creating an electrochemical sensor for the detection of diflubenzuron. The response of Cu/CuO/CuO@C/GCE, expressed as ΔI/I exhibited a linear correlation with the logarithm of the diflubenzuron concentration ranging from 1.0 × 10 to 1.0 × 10 mol·L. The limit of detection (LOD) was determined to be 130 fM using differential pulse voltammetry (DPV). The electrochemical sensor demonstrated excellent stability, reproducibility, and anti-interference properties. Moreover, Cu/CuO/CuO@C/GCE was successfully employed to quantitatively determine diflubenzuron in actual food samples (tomato and cucumber) and environmental samples (Songhua River water, tap water, and local soil) with good recoveries. Finally, the possible mechanism of Cu/CuO/CuO@C/GCE for monitoring diflubenzuron was thoroughly investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.136802DOI Listing

Publication Analysis

Top Keywords

electrochemical sensor
12
detection diflubenzuron
8
environmental samples
8
diflubenzuron
6
sensor derived
4
derived cu-btb
4
cu-btb mof
4
mof efficient
4
detection
4
efficient detection
4

Similar Publications

Ultrafine metal-organic framework @ graphitic carbon with MoS-CNTs nanocomposites as carbon-based electrochemical sensor for ultrasensitive detection of catechin in beverages.

Mikrochim Acta

December 2024

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.

GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Enhanced Electrochemical Detection of Valganciclovir Using a Hierarchically Structured Lisianthus Flower-Inspired Bimetallic Ni-Ce Organic Framework.

Langmuir

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.

This study reports the development of an innovative electrochemical sensor based on organometallic framework nanostructures for detecting valganciclovir (VLCV). VLCV is employed in the treatment of cytomegalovirus retinitis in AIDS patients. Rational design of nanoarchitectures for electroactive materials is a crucial approach for boosting their electrocatalytic performance.

View Article and Find Full Text PDF

In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].

View Article and Find Full Text PDF

pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.

View Article and Find Full Text PDF

Carbon-based light addressable potential aptasensor based on the synergy of C-MXene@rGO and OPD@NGQDs for low-density lipoprotein detection.

Mikrochim Acta

December 2024

School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!