HIV Protease Hinge Region Insertions at Codon 38 Affect Enzyme Kinetics, Conformational Stability and Dynamics.

Protein J

Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, 2050, South Africa.

Published: October 2023

HIV-1 protease is essential for the production of mature, infectious virions and is a major target in antiretroviral therapy. We successfully purified a HIV-1 subtype C variant, L38↑N↑L, containing an insertion of asparagine and leucine at position 38 without the four background mutations - K20R, E35D, R57K, V82I using a modified purification protocol. Isothermal titration calorimetry indicated that 50% of the variant protease sample was in the active conformation compared to 62% of the wild type protease. The secondary structure composition of the variant protease was unaffected by the double insertion. The specific activity and k values of the variant protease were approximately 50% lower than the wild type protease values. The variant protease also exhibited a 1.6-fold increase in k/K when compared to the wild type protease. Differential scanning calorimetry showed a 5 °C increase in T of the variant protease, indicating the variant was more stable than the wild type. Molecular dynamics simulations indicated the variant was more stable and compact than the wild type protease. A 3-4% increase in the flexibility of the hinge regions of the variant protease was observed. In addition, increased flexibility of the flaps, cantilever and fulcrum regions of the variant protease B chain was observed. The variant protease sampled only the closed flap conformation indicating a potential mechanism for drug resistance. The present study highlights the direct impact of a double amino acid insertion in hinge region on enzyme kinetics, conformational stability and dynamics of an HIV-1 subtype C variant protease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480237PMC
http://dx.doi.org/10.1007/s10930-023-10132-6DOI Listing

Publication Analysis

Top Keywords

variant protease
36
wild type
20
type protease
16
protease
14
variant
12
hinge region
8
enzyme kinetics
8
kinetics conformational
8
conformational stability
8
stability dynamics
8

Similar Publications

SUMOylation involves covalent attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on target proteins and regulates various aspects of their function. Sentrin-specific proteases (SENPs) are key players in both the conjugation reaction of SUMO proteins to their targets and the subsequent deconjugation of SUMO-conjugated substrates. Here, we provide the first comprehensive prenatal description of a lethal syndrome linked to a novel homozygous stop-gain variant in SENP7 c.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 can infect liver cells (hepatocytes), leading to elevated liver enzymes and more severe disease in those with pre-existing liver conditions.
  • The study shows that the virus replicates and spreads in hepatocytes, with infection being dependent on two specific proteins, ACE2 and TMPRSS2, which are found on the liver cells.
  • Infection causes rapid liver cell death, with the Omicron variant causing quicker but less extensive damage compared to other strains, as seen in both human liver cells and infected mice.
View Article and Find Full Text PDF

Title: Identification of a novel GRHPR mutation in primary hyperoxaluria type 2 and establishment of patient-derived iPSC line.

Hum Cell

January 2025

Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China.

This research delves into Primary Hyperoxaluria Type 2 (PH2), an autosomal recessive disorder precipitated by a unique case of compound heterozygous deleterious mutations in the GRHPR gene, specifically the intron2/3 c.214-2 T > G and the exon8 c.864-865delTG, leading to a premature stop codon at p.

View Article and Find Full Text PDF

SARS-CoV-2 has continued spreading around the world in recent years since the initial outbreak in 2019, frequently developing into new variants with greater human infectious capacity. SARS-CoV-2 and its mutants use the angiotensin-converting enzyme 2 (ACE2) as a cellular entry receptor, which has triggered several therapeutic strategies against COVID-19 relying on the use of ACE2 recombinant proteins as decoy receptors. In this work, we propose an ACE2 silent Fc fusion protein (ACE2-hFcLALA) as a candidate therapy against COVID-19.

View Article and Find Full Text PDF

Nagashima-type palmoplantar keratosis (NPPK) has been shown to represent a form of autosomal recessive palmoplantar keratosis due to biallelic pathological variants of SERPINB7, which encodes a serine protease inhibitor expressed in the epidermis. Approximately 10 years have elapsed since NPPK was demonstrated to be an independent genetic disease, and the most prevalent palmoplantar keratoderma (PPK) in East Asian countries due to a high prevalence of founder mutations in SERPINB7. Since then, it has become evident that biallelic pathological variants of SERPINA12, which encodes a serine protease inhibitor expressed in the epidermis, can also manifest symptoms analogous to those of NPPK.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!