The key to the analysis of electroencephalogram (EEG) signals lies in the extraction of effective features from the raw EEG signals, which can then be utilized to augment the classification accuracy of motor imagery (MI) applications in brain-computer interface (BCI). It can be argued that the utilization of features from multiple domains can be a more effective approach to feature extraction for MI pattern classification, as it can provide a more comprehensive set of information that the traditional single feature extraction method may not be able to capture. In this paper, a multi-feature fusion algorithm based on uniform manifold approximate and projection (UMAP) is proposed for motor imagery EEG signals. The brain functional network and common spatial pattern (CSP) are initially extracted as features. Subsequently, UMAP is utilized to fuse the extracted multi-domain features to generate low-dimensional features with improved discriminative capability. Finally, the k-nearest neighbor (KNN) classifier is applied in a lower dimensional space. The proposed method is evaluated using left-right hand EEG signals, and achieved the average accuracy of over 92%. The results indicate that, compared with single-domain-based feature extraction methods, multi-feature fusion EEG signal classification based on the UMAP algorithm yields superior classification and visualization performance. Feature extraction and fusion based on UMAP algorithm of left-right hand motor imagery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-023-02878-z | DOI Listing |
Brain Topogr
January 2025
Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
EEG involves recording electrical activity generated by the brain through electrodes placed on the scalp. Imagined speech classification has emerged as an essential area of research in brain-computer interfaces (BCIs). Despite significant advances, accurately classifying imagined speech signals remains challenging due to their complex and non-stationary nature.
View Article and Find Full Text PDFJ Sleep Res
January 2025
Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA.
The neuronal ceroid lipofuscinoses (NCLs) are a group of recessively inherited neurodegenerative diseases characterizsed by lysosomal storage of fluorescent materials. CLN3 disease, or juvenile Batten disease, is the most common NCL that is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene. Sleep disturbances are among the most common symptoms associated with CLN3 disease that deteriorate the patients' life quality, yet this is understudied and has not been delineated in animal models of the disease.
View Article and Find Full Text PDFeNeuro
January 2025
The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.
Extended performance of cognitively demanding tasks induces cognitive fatigue manifested with an overall deterioration of behavioral performance. In particular, long practice with tasks requiring impulse control is typically followed by a decrease in self-control efficiency, leading to performance instability. Here, we show that this is due to changes in activation modalities of key task-related areas occurring if these areas previously underwent intensive use.
View Article and Find Full Text PDFNeuroimage
January 2025
Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, (TN), Italy.
Transcranial magnetic stimulation (TMS) has the potential to yield insights into cortical functions and improve the treatment of neurological and psychiatric conditions. However, its reliability is hindered by a low reproducibility of results. Among other factors, such low reproducibility is due to structural and functional variability between individual brains.
View Article and Find Full Text PDFJ Neural Eng
January 2025
School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, CHINA.
Objective: Entrainment has been considered as a potential mechanism underlying the facilitatory effect of rhythmic neural stimulation on neurorehabilitation. The inconsistent effects of brain stimulation on neurorehabilitation found in the literature may be caused by the variability in neural entrainment. To dissect the underlying mechanisms and optimize brain stimulation for improved effectiveness, it is critical to reliably assess the occurrence and the strength of neural entrainment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!