Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background The identification of large-artery stiffness as a major, independent risk factor for cardiovascular disease-associated morbidity and death has focused attention on identifying therapeutic strategies to combat this disorder. Genetic manipulations that delete or inactivate the translin/trax microRNA-degrading enzyme confer protection against aortic stiffness induced by chronic ingestion of high-salt water (4%NaCl in drinking water for 3 weeks) or associated with aging. Therefore, there is heightened interest in identifying interventions capable of inhibiting translin/trax RNase activity, as these may have therapeutic efficacy in large-artery stiffness. Methods and Results Activation of neuronal adenosine A receptors (ARs) triggers dissociation of trax from its C-terminus. As ARs are expressed by vascular smooth muscle cells (VSMCs), we investigated whether stimulation of AR on vascular smooth muscle cells promotes the association of translin with trax and, thereby increases translin/trax complex activity. We found that treatment of A7r5 cells with the AR agonist CGS21680 leads to increased association of trax with translin. Furthermore, this treatment decreases levels of pre-microRNA-181b, a target of translin/trax, and those of its downstream product, mature microRNA-181b. To check whether AR activation might contribute to high-salt water-induced aortic stiffening, we assessed the impact of daily treatment with the selective AR antagonist SCH58261 in this paradigm. We found that this treatment blocked aortic stiffening induced by high-salt water. Further, we confirmed that the age-associated decline in aortic pre-microRNA-181b/microRNA-181b levels observed in mice also occurs in humans. Conclusions These findings suggest that further studies are warranted to evaluate whether blockade of ARs may have therapeutic potential in treating large-artery stiffness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382090 | PMC |
http://dx.doi.org/10.1161/JAHA.122.028421 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!