Introduction: Medical management of disorders of consciousness (DoC) is a growing issue imposing a major burden on families and societies. Recovery rates vary widely among patients with DoC, and recovery predictions strongly influence decisions on medical care. However, the specific mechanisms underlying different etiologies, consciousness levels, and prognoses are still unclear.

Methods: We analyzed the comprehensive cerebrospinal fluid (CSF) metabolome through liquid chromatography-mass spectrometry. Metabolomic analyses were used to identify the metabolic differences between patients with different etiologies, diagnoses, and prognoses.

Results: We found that the CSF levels of multiple acylcarnitines were lower in patients with traumatic DoC, suggesting mitochondrial function preservation in the CNS, which might contribute to the better consciousness outcomes of these patients. Metabolites related to glutamate and GABA metabolism were altered and showed a good ability to distinguish the patients in the minimally conscious state and the vegetative state. Moreover, we identified 8 phospholipids as potential biomarkers to predict the recovery of consciousness.

Conclusions: Our findings shed light on the differences in physiological activities underlying DoC with different etiologies and identified some potential biomarkers used for DoC diagnosis and prognosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454269PMC
http://dx.doi.org/10.1002/brb3.3070DOI Listing

Publication Analysis

Top Keywords

cerebrospinal fluid
8
patients etiologies
8
etiologies diagnoses
8
disorders consciousness
8
potential biomarkers
8
patients
6
doc
5
fluid metabolite
4
metabolite alterations
4
alterations patients
4

Similar Publications

This special issue contains multiple articles related to the DETeCD-ADRD guideline.

View Article and Find Full Text PDF

Molecular biomarkers associated with TBI outcome in individuals of Black racial identity or African ancestry: a narrative review.

World Neurosurg

December 2024

College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Global Neurosurgery Laboratory, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Department of Neurology, One Brooklyn Health/Brookdale University Hospital and Medical Center, Brooklyn, New York, USA; Department of Neurology; SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Division of Neurosurgery, Department of Surgery, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Department of Community Health Sciences, School of Public Health, SUNY Downstate Health Sciences University; Department of Surgery, One Brooklyn Health/Brookdale University Hospital and Medical Center, Brooklyn, New York, USA. Electronic address:

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide and a major global health concern. In the United States (US), individuals of Black or African American racial identity experience disproportionately higher rates of TBI and suffer from worse post-injury outcomes. Contemporary research agendas have largely overlooked or excluded Black populations, resulting in the continued marginalization of Black patient populations in TBI studies, thereby limiting the generalizability of ongoing research to patients in the US and around the world.

View Article and Find Full Text PDF

Background: Aneurysmal subarachnoid hemorrhage (aSAH) carries a high economic cost and clinical morbidity in the United States. Beyond prolonged admissions and poor post-injury functional status, there is an additional cost of chronic shunt-dependent hydrocephalus for many aSAH patients. Adjuvant lumbar drain (LD) placement has been hypothesized to promote clearance of subarachnoid blood from the cisternal space, with an ultimate effect of decreasing shunt placement rates.

View Article and Find Full Text PDF

During gestation, the choroid plexus (ChP) produces protein-rich cerebrospinal fluid and matures prior to brain development. It is assumed that ChP dysfunction has a profound effect on developmental neuropsychiatric disorders, such as autism spectrum disorder (ASD). However, the mechanisms linking immature ChP to the onset of ASD remain unclear.

View Article and Find Full Text PDF

Virus encephalitis (VE), recognized as one of the common kinds of central nervous system (CNS) diseases after virus infection, has a surprising correlation with autoimmune encephalitis (AE) when autoimmune antibodies emerge in cerebrospinal fluid (CSF) or serum. Herpes simplex virus and Epstein-Barr virus are the most critical agents worldwide. By molecular mimicry, herpes viruses can invade the brain directly or indirectly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!