We investigated the mechanisms underlying the effects of the antidepressant fluoxetine on behavior and adult hippocampal neurogenesis (AHN). After confirming our earlier report that the signaling molecule β-arrestin-2 (β-Arr2) is required for the antidepressant-like effects of fluoxetine, we found that the effects of fluoxetine on proliferation of neural progenitors and survival of adult-born granule cells are absent in the β-Arr2 knockout (KO) mice. To our surprise, fluoxetine induced a dramatic upregulation of the number of doublecortin (DCX)-expressing cells in the β-Arr2 KO mice, indicating that this marker can be increased even though AHN is not. We discovered two other conditions where a complex relationship occurs between the number of DCX-expressing cells compared to levels of AHN: a chronic antidepressant model where DCX is upregulated and an inflammation model where DCX is downregulated. We concluded that assessing the number of DCX-expressing cells alone to quantify levels of AHN can be complex and that caution should be applied when label retention techniques are unavailable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hipo.23568 | DOI Listing |
EBioMedicine
October 2024
Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen N-5021, Norway. Electronic address:
J Neurochem
August 2024
Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by motor and non-motor symptoms. Motor symptoms include bradykinesia, resting tremors, muscular rigidity, and postural instability, while non-motor symptoms include cognitive impairments, mood disturbances, sleep disturbances, autonomic dysfunction, and sensory abnormalities. Some of these symptoms may be influenced by the proper hippocampus functioning, including adult neurogenesis.
View Article and Find Full Text PDFHippocampus
October 2023
Department of Psychiatry, Columbia University, New York, New York, USA.
We investigated the mechanisms underlying the effects of the antidepressant fluoxetine on behavior and adult hippocampal neurogenesis (AHN). After confirming our earlier report that the signaling molecule β-arrestin-2 (β-Arr2) is required for the antidepressant-like effects of fluoxetine, we found that the effects of fluoxetine on proliferation of neural progenitors and survival of adult-born granule cells are absent in the β-Arr2 knockout (KO) mice. To our surprise, fluoxetine induced a dramatic upregulation of the number of doublecortin (DCX)-expressing cells in the β-Arr2 KO mice, indicating that this marker can be increased even though AHN is not.
View Article and Find Full Text PDFMol Neurobiol
June 2023
Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting the body and mind of millions of people in the world. As PD progresses, bradykinesia, rigidity, and tremor worsen. These motor symptoms are associated with the neurodegeneration of dopaminergic neurons in the substantia nigra.
View Article and Find Full Text PDFAlcohol Clin Exp Res (Hoboken)
March 2023
Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Background: Adolescent intermittent ethanol (AIE) exposure causes long-term changes in the brain and behavior of adult male rodents, including persistent induction of innate immune pathways, reductions in hippocampal neurogenic and forebrain cholinergic neuronal markers, and reversal learning deficits. The current study tests the hypothesis that proinflammatory induction mediates AIE-induced (1) loss of adult neurogenesis (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!