With polymerization duration and Au concentration of the electrolyte regulated, a desirable nitrate-doped polypyrrole ion-selective membrane (PPy(NO)-ISM) and Au solid contact layer of anticipate surface morphology were obtained, and the performance of nitrate all-solid ion-selective electrodes (NS ISEs) was improved. It was found that the roughest PPy(NO)-ISM remarkably increases the actual contact surface area of the PPy(NO)-ISMs with nitrate solution, which leads to better adsorption of NO ions upon the PPy(NO)-ISMs, and produces a larger number of electrons. The most hydrophobic Au solid contact layer avoids the formation of the aqueous layer at the interface between the PPy(NO)-ISM and Au solid contact layer, and ensures unimpeded transporting of the produced electrons. The PPy-Au-NS ISE for polymerization duration 1800 s and at Au concentration 2.5 mM of the electrolyte displays an optimal nitrate potential response, including a Nernstian slope of 54.0 mV/dec, LOD of 1.1 × 10 M, rapid average response time less than 1.9 s, and long-term stability of more than 5 weeks. This indicates that the PPy-Au-NS ISE is an effective working electrode for the electrochemical determination of NO concentration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145561PMC
http://dx.doi.org/10.3390/mi14040855DOI Listing

Publication Analysis

Top Keywords

solid contact
16
contact layer
16
polypyrrole ion-selective
8
ion-selective membrane
8
performance nitrate
8
nitrate all-solid
8
all-solid ion-selective
8
ion-selective electrodes
8
polymerization duration
8
concentration electrolyte
8

Similar Publications

The wetting characteristics of fluids play a crucial role in various fields of interface and surface science. Contact angle serves as a fundamental indicator of wetting behavior. However, accurate quantification of wetting phenomena even at the macroscale often poses challenges, particularly due to the hysteresis between receding and advancing contact angles.

View Article and Find Full Text PDF

Constructing a green modifier by using glyoxal-urea resin and chitosan to obtain a modified soy protein adhesive with high bonding strength and excellent water resistance.

Int J Biol Macromol

December 2024

Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China. Electronic address:

The manufacturing of soy-based adhesives with high bonding strength, excellent water resistance, and exceptional environmental performance still faces difficulties. In this work, using glyoxal-urea (GU) resin, chitosan (CS), and soy protein isolate (SPI) as the primary raw materials in order to effectively mitigate the release of free formaldehyde commonly found in traditional wood-based panels. Obtaining an adhesive with high strength, excellent water resistance, and a stable cross-linking structure of GU/CS/SPI (CS represents different mass fractions of chitosan solution).

View Article and Find Full Text PDF

Pulmonary infection caused by Tropheryma whipplei: a case report and review of the literature.

J Med Case Rep

December 2024

Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital of Nanchang University, Nanchang, 330052, Jiangxi, People's Republic of China.

Background: Tropheryma whipplei pneumonia is an infrequent medical condition. The clinical symptoms associated with this disease are nonspecific, often resulting in misdiagnosis or missed diagnosis. Therefore, sharing and summarizing the experiences in the diagnosis and treatment of this disease can deepen global understanding and awareness of it.

View Article and Find Full Text PDF

Unlocking Solid-State Sodium-Metal Batteries at -15 °C by Electrolyte Optimization and Interface Regulation.

ACS Appl Mater Interfaces

December 2024

Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China.

Beta-AlO-based solid-state sodium metal batteries are some of the best options for large-scale energy storage systems because of their high energy density, high-level safety, and low cost. Nevertheless, their room-/low-temperature operation remains challenging due to low ionic conductivity of Beta-AlO electrolyte and weak solid-solid contact of the Na/Beta-AlO interface. Herein, an integrated strategy was developed via electrolyte optimization and interface regulation, in which Cu as a stabilizing agent was incorporated into Beta-AlO to improve density and ionic conductivity and the InS interface layer was introduced between the Na anode and solid electrolyte to induce the in situ formation of a mixed conductive layer (Na-In alloy and NaS).

View Article and Find Full Text PDF

Enhancing Quasi-Solid-State Lithium-Metal Battery Performance: Multi-Interlayer, Melt-Infused Lithium and Lithiophilic Coating Strategies for Interfacial Stability in Li||VS-DSGNS-LATP|PEO-PVDF||NMC622-AlO Systems.

ACS Appl Mater Interfaces

December 2024

Advanced Functional Nanomaterials Research Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University (A Central University), Dr. R. Venkataraman Nagar, Kalapet, Puducherry 605014, India.

The development of quasi-solid-state lithium metal batteries (QSSLMBs) is hindered by inadequate interfacial contact, poor wettability between electrodes and quasi-solid-state electrolytes, and significant volume changes during long-term cycling, leading to safety risks and cataclysmic failures. Here, we report an innovative approach to enhance interfacial properties through the construction of QSSLMBs. A multilayer design integrates a microwave-synthesized LiAlTi(PO) (LATP) ceramic electrolyte, which is surface-coated with a lithiophilic conductive ink comprising VS and disulfonated functionalized graphene nanosheets (VS-DSGNS) using a low-cost nail-polish binder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!